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I. Phys. A Math. Gen. 28 (1995) 5097-5115. Printed in the UK 

On the integrability of stationary and restricted flows of 
the KdV hierarchy" 

G Tondot 
Dipartimento di Scienze Matematiche, Universita de@ Studi di Trieste, Piaz.le E w p a  I ,  I- 
34127 Trieste, Italy 

Received 15 May 1995 

Abstract. A bi-Hamiltonian formulation for stationary flows of the ~ d v  hierarchy is derived in 
an extended phase space. A map between stationary flows and mhicted Rows is constructed 
in one case it connects an integrable H&on-Heiles system and the Gamier system. Moreover, a 
new integrability scheme for Hamiltonian systems is proposed that holds in the standard phase 
space. 

1. Introduction 

In recent years there has been an increasing interest for the construction of finite- 
dimensional dynamical systems from soliton equations, through the so-called methods of 
statiomryjows and resrrictedjows (see [I, 21 and references therein). The discovery of 
suitable sets of coordinates has allowed one to write the reduced systems as physically 
interesting Hamiltonian systems. In the case of the KdV hierarchy, the q-representation for 
stationary flows has given rise to the Hdnon-Heiles system 13.41, the square eigenfunctions 
representation for restricted flows has furnished the Neumann and the Garnier systems [5,6].  
However the relation between dynamical systems which are obtained through different 
reduction techniques from the same soliton hierarchy is not clear: moreover a systematic 
way to find the second Hamiltonian formulation for stationary flows of any order, without 
the use of a Miura map, is still lacking. 

The aim of this paper is to give a contribution in these directions. In particular: 

(i) A bi-Hamiltonian formulation for stationary flows of the KdV hierarchy in a suitably 
extended phase space is derived in a systematic way. As an example, the bi-Hamiltonian 
structure of HCnon-Heiles-type systems is explicitly shown. 

(ii) A map between stationary and restricted flows of the KdV hierarchy is obtained, based 
on the generating function of the Gelfand-Dickey (GD) polynomials. As an application, 
a map between an integrable H6non-Heiles system and the Gamier system with two 
degrees of freedom is constructed. 

(iii) An integrability criterion is proposed, which can be applied to both stationary and 
restricted flows. Though weaker than the bi-Hamiltonian formulation, it does not require 
the extension of the phase spaces. 

* Work partially supported by the GNFh4 ofthe Italian CNR and by Ule project 'Metodi Geometrici e probabilistici 
in Fisica Matematica' of the Italian MURST. 
t E-mail addrws: tondo@univ.trieste.it 
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The paper is organized as follows. In section 2 we conshuct the stationary flows 
associated to the the Kdv hierarchy through the kernel of the Poisson pencil. Using 
the generating function of OD polynomials as in [71. we give a bi-Lagrangian and a bi- 
Hamiltonian formulation of the Lax-Novikov stationary equations of any order, as an 
application, we exhibit a generalized Hhon-Heiles system. 

In sections 3 and 4 we formulate the method of reshicted flows in terms of the 
Poisson pencil instead of the spectral problem as in [5.2]. This formulation allows us 
to explicitly conshuct a map between restricted and stationary flows, by means of an 
appropriate extension of the corresponding phase spaces. The previous map is specialized 
to the H6non-Heiles and the Gamier systems. 

In section 5 we show that the entire bi-Hamiltonian hierarchy of the Hdnon-Heiles and 
the Garnier systems cannot be reduced from the extended to the standard phase space. For 
this reason, we propose an integrability criterion holding for a generic finite-dimensional 
Hamiltonian system. It generalizes the criterion introduced in [SI for the particular case 
of the Htnon-Heiles system. Though weaker than the bi-Hamiltonian scheme, it assures 
Liouvillsintegrability of a Hamiltonian system [9] in its standard phase space, i.e. without 
the introduction of supplementary coordinates. This criterion is applied to the generalized 
Hdnon-Heiles system and to the Gamier system with two degrees of freedom. 

Now we give some preliminaries, mainly to specify notation and terminology. Let M be 
a n-dimensional manifold. At any point U E M, the tangent and cotangent spaces are denoted 
by T.M and T f M ,  the pairing between the two spaces by (,) : T f M x  T,M + R. For each 
smooth function f E Cm(M) ,  df denotes the differential of f. M is said to be a Poisson 
manifold if it is endowed with a Poisson bracket {, } : C m ( M )  x Cw(M)  -+ Cw(M) ,  
possibly a degenerate one; the associated Poisson tensor P is defined by (f, g)(u) := 
(df(u), P. dg(u)). So, at each point U, P. is a linear map P, : T f M  + T,M, skew- 
symmetric and with vanishing Schouten bracket [IO]. A function h E P ( M )  with a non 
trivial differential df E KerP is called a Casimir of P: Pu df(u) = 0. A map Q, : M + M 
is a Poisson morphism if If, g] o Q, = (f o Q,, g o Q,}, for each f, g E Cm(M); Q, leaves 
invariant the Poisson tensor P: Pq,, = @* P. Q,*, where Q,* and Q,* denote, respectively, 
the tangent and the cotangent maps associated to Q,. In particular, if the Poisson bracket is 
non-degenerate, i.e. if P is invertible, and the Poisson morphism is a diffeomorphism, 
Q, defines a symplectic (canonical) transformation. M is said to be a bi-Hamiltonian 
manifold if it is endowed with two Poisson tensors Po and PI such that the associated 
pencil PA := PI - XPO be itself a Poisson tensor for any h E C [ I I ,  121. 

2. Stationary flows and H6non-Heiles systems 

2.1. KdV hierarchy and Gevand-Dicky polynomials 

Let M be a bi-Hamiltonian manifold: if the associated Poisson pencil PA := PI - APo 
admits as a Casimir a formal Laurent series h(h) 

then hi, is a Casimir of Po and the coeficients hj ( j  2 1) are the Hamiltonian functions of 
a hierarchy of bi-Hamiltonian vector fields Xj: 

Xj = Pldhj = Podhj+l ( j  2 0 ) .  (2.2) 
At any point K E M, the bi-Hamiltonian flows are given by du/dfj = X~(K), tj being 
the evolution parameter of the jth flow. The vector fields (2.2) are Hamiltonian also with 
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respect to the Poisson pencil PA. In fact the recursion relation (2.2) can be written as 

Xj = P A  dh”’(A) hLi)(A) := (AjhQ))+ (2.3) 

where the index + means the projection of a Laurent series onto the purely polynomial part. 
Let M be the algebra of polynomials in U. u x ,  U,,, . . . (U = u(x) is a Cm function of x 

and the subscript x means the derivative with respect to x) ,  and let PO and PI be the two 
Poisson tensors of the KdV hierarchy [ I  I]: 

d’ d 
dx 

PI := + 4 ~ -  + 2 ~ ,  . d 
Po := ax (2.4) 

The gradients of the Casimirs of the associated Poisson pencil P A  can be obtained searching 
for the I-forms u(A) := zj,, uj A-’ which are solutions of the following equation: 

BA@@), W )  = a @ )  (2.5) 

B’(wI ,  W Z )  := W I ~ ~ W Z  + W I  W Z I ~  - wixtu2r + ( 4 ~  - A ) W I  W Z .  

d 
- B A ( w l ,  W Z )  = W I  P’WZ + wz P’WI dx 

where a @ )  = Ejaw1 ujh-j ,  U, are constant parameters and BA is the bilinear function 

(2.6) 
In fact BA is related to the Poisson pencil through the relation 

CJ W l ?  w 2 ) .  (2.7) 

Equation (2.5) can be solved developing the left-hand side as a Laurent series 

so that, for each U@), it furnishes the coefficients of the solution u ( A )  (unique up to a 
sign). The solution corresponding to Z(A) = -A is the so-called basis solution G(A); its 
first coefficients are 
- - u0 = I u1 = 2~ uZ = 2(~,,  + 32) ii3 = 2(d4) + 5 4  +  IO^,^ + 1 0 ~ 3 )  

(2.9) 
and so on, namely the gradients of the &st KdV Hamiltonians. In what follows we shall 
consider also the I-form U@) = c(A)O(A), which is a solution of (2.5) for 

u(A) = -Ac2(A) c(A) = 1 + CcjA-’ (2.10) 
1,) 

where the coefficients c, are free parameters. In this case. the first I-forms of the hierarchy 
are uo = I ,  V I  =GI +cl, vz =VZ +cl31 +q, and so on. 

The coefficient Bk in (2.8) can be expressed through the OD polynomials. For each 
Laurent series u(A) let us consider the functions B@)(A)  := BA (U@), d k ) ( A ) ) ,  where 
uCk)(A) := (Aku(A))t; these functions have the form 

It can be shown that 

B-t = -U0 2 = pok - U o V k t i  (k B &io) I (2.12) 

Furthermore, if u(A) is a solution of (2.5), the coefficients pjk in (2.1 1) are polynomials in 
U and its x-derivatives. They will be referred to as Gelfand-Dickey (GD) polynomials and 
the function BA as their generating function. 
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Thefundmntul property of the GD polynomials, stemming from (2,l I), (2.5), (2.7). (2.3). 
is the following relation with the gradients uj = dhj and the bi-Hamiltonian vect~r fields 
Xx: 

(2.13) 

We report some CD polynomials to be used in what follows (UO = 1): 
p ~ = 4 u - u l  
poi = ~ U U I  - U: - Y + 2~ixx 
p a  = ~ U U :  f 8 ~ ~ 2  - 2 ~ 1 ~ 2  - US - U:, + 2 ~ 1  U I . ~  4- 2 ~ , ,  (2.14) 

2 P 1 2 = 8 U V I Y  -U2 +4UV3 - U I U 3 - u 4 + 2 U 1 ~ ~ + 2 U 2 U l , $ 2 V 1 ~ ~ ~ f U 3 ~ x  
Pkk = 2uxlrvt - + 4 u 4 .  

The CD polynomials corresponding to the basis solution 3(h)  are. the polynomials defined 
in [ 1, proposition 12.1.121. 

2.2. The method of smimu?yflows 

The method of statiom7yfina [13-15] was developed in order to reduce the flows of the 
Kdv hierarchy onto the set M, of fixed points of the nth flow X. of the hierarchy: 

(2.15) 
As M, is odd-dimensional it cannot be a symplectic manifold; nevertheless we will show that 
it is a bi-Hamiltonian manifold it will be referred to as e x c e d e d p h e  space. Moreover, 
M, is naturally foliated, on account of (2.2) and (2.4). by a one-parameter family of 2n- 
dimensional submanifolds S, given by 

s":=IuIu.+I(U.Ux,...r U(%)) = c) (2.16) 

(c being a constant parameter), which are invariant manifolds with respect to each vector 
field of the Kdv hierarchy, due to the invariance of the 1-forms U&. So M, can be 
parametrized naturally by U ] ,  ..., u.+l and by their x-derivatives uix. ... , unx. We shall 
use these coordinates in what follows. 

Here we perform two different stationary reductions of the KdV flows by improving the 
procedure introduced in [7]. On one side, we choose as a reduction submanifold Sio) just the 
leaf S. of the foliation (2.16) corresponding to c = 0; it is a level set of the OD polynomial 
pw, due to (2.5),(2.8),(2.12). On account of equation (2.13). the GD polynomials pjn, 
restricted to M., are also invariant with respect to each flow of the hierarchy; thus we can 
choose as a second reduction submanifold Si') a level set of pnn. The one-parameter family 
of the level sets of pnn forms a foliation of the manifold M. different from the previous 
one. Finally we construct the bi-Hamiltonian structure in the ground manifold M,. 

(i) Due to (2.3) and (2.51, the manifold M, is defined by the solutions U of the equation 

M,, := (U 1 X.(u, U%, . . . , U(&+") = 0). 

From the computational point of view, one proceeds as follows. 

BA(u(A),  u'"'(A)) = A"u(A) (2.17) 

ujh-j. In particular, if all) = -A&.), as in where u(A) = &, ujA-1, U @ )  = 
(2.10), M. is given by 

(2.18) 
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i.e. by the solutions of the Lax-Novikov equations [13]. Taking into account (2.11) and 
choosing 0-1 = -1, by equating in equation (2.17) the coefficients of An+' we get U; = 1; 
from now on we put U,, = 1. Moreover, equating the coefficients of the other powers of A 
we get the following system: 

pa-uktl =at (k=O ...., n-1)  pjn=an+j ( j = O ,  ..., n ) .  (2.19) 

(U) In order to obtain the first Poisson tensor PO, we eliminate U = u1/2+%/4 from (2.19) 
using the first equation (k = 0) and we extract the system of n second-order ODES in the 
uj (i = I , .  . . , n ) :  

(2.20) 

which will be referred to as Po-system. The remaining equations (2.19) will furnish a set 
of n independent integrals of motion. In order to obtain a second Poisson structure, we 
consider the following system: (&-system) 

p~ - ut+, = ak (k = 1 , .  . . , n - 1) pori = a, 

&-uk+l=ak  ( k = l .  ..., n - 1 )  p m = a a  (2.21) 

with U as above. 

(iii) The system (2.20) can be written in Lagrangian form. For this purpose, we use the so- 
called Newton or r-representation introduced in [ 161. Namely, we choose as new coordinates 
in S," the first n coefficients r, of the formal series r(A) := 

rk = A.-* (m) (k = I , .  .. , n)  (2.22) 

where A,+ means the coefficient of Ak in a Laurent series. Taking into account (2.17), and 
observing that 2rntl = rjrn+l-j, equations (2.20) are equivalent to 

(A" (r= + (rl + F) r - &)) = 0. 
+ 

This system is Lagrangian, with Lagrangian function 

Lie) = A++l)(L(A: r ( U )  
where L(A; w(A)) is given, for each Laurent series w(A), by 

(2.23) 

(2.24) 

L(A; W(A)) := -(?&(A)) 1 - - ( wi + - m L A ) w z ( A ) - -  a(A) . (2.25) 2 2 Swz(A) 
The Lagrangian gradients 

_-  "") - Ak-1 (A" (-rxx - (ri + v) r + 5)) (k = 1 , .  . . , n ) .  (2.26) 
6rk + 

We remark that it is also possible to put also the PI-system (2.21) in Lagrangian form. 
For this purpose, we take as coordinates in Si') qt = rk (k = 1,. . . , n - 1) and q,, = 6. 
By this choice the system (2.21) is equivalent to 

-qz+ A''-' q x x  + 41 + - 
2 ( ( ( " ; ^ ) q - ; ) ) + = o  (2.27) 
qwx + (41 + - -@ =o 

n 
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where (A"-'q(A))+ := ( A n - ' m + ,  This is a Lagrangian system with Lagrangian 

(2.28) 

Indeed it can be verified that the Lagrangian gradients of LA') are 

The two previous Lagrangian systems can be put in canonical Hamiltonian form. For 
the Po-system the canonical momenta are sn+l-k = r k  (k = 1,. . . , n) and the Hamiltonian 
function 

(2.30) HLo) = A-("+') (7-14; r(QI s W )  

where s(h) = & 3jA-j and 'H(h; w(A), z (h ) )  is given by 

(2.31) 

For the PI-system the canonical momenta are pn  = qnx, p.-k = q k  (k = 1,. , . , n - I ) ,  
and the Hamiltonian function is 

with p ( ~ )  = cy=, p j l - j .  
The two Hamiltonian functions depend, respectively, on the two sets of coordinates and 

momenta ( r k , s k ) .  ( q k ,  p t )  and on the two sets of free parameters (ao. .. .,a,,-l,an) and 
(00, . . . , a n - ~ , a d .  

(iv) Now let us consider the manifold M,, (Z.lS), which can be parametrized either by 
(rk,sk,a,J, or by (qk ,pk ,azn) ,  with a. and a& as additional dynamical variables in M,. 
On this manifold one can trivially extend the canonical Poisson structures, the Hamiltonians 
and the vector fields associated with each one of the two systems as in [17]. In particular the 
vector fields can be extended in such a way that they are tangent to one of the foliations Si:) 
and S E .  Taking into account, on one side, the relation between the two sets of coordinates 
through the original variables (Q, uix) ,  and on the other side the relation between the 
two integrals of motion a, and ay, through the GD polynomials pori and pen, a map 

: M, -+ M., (rk.sk,a.) H ( q k ,  p 5 , a k )  can be systematically constructed. It relates 
the Hamiltonians and the vector fields of one system with the corresponding ones of the 
other system. Since this map is not a Poisson morphism, the extended canonical Poisson 
structures associated with one chart are mapped onto a Poisson structure different from the 
extended canonical structure associated with the other chart. If this second Poisson tensor 
is compatible with the extended canonical one, a bi-Hamiltonian formulation of the two 
systems is obtained. 

In conclusion we can state the following: 
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Proposition 2.1. The Po-system (2.20) and the PI-system (2.21). written respectively in 
the coordinates rk and are natural Lagrangian systems. The corresponding canonical 
Hamiltonian systems 

(2.33) 

(2.34) 

have n integrals of motion given by 

K . z - 1  I - gp,niv . = ( j  = 1 , .  . . , n)  H. I - = -l s ~ l n , ,  = an+j (i = 0, .. . , n  - 1). 
(2.35) 

: M. -+ M .  in the extended phase space generates a second Poisson Moreover, the map 
structure. 

Remark 2.1. The symbols IY and IX in (2.35) rnean that, in the GD polynomials p j ~ .  the 
coordinates ( V U ,  uh) must be replaced by the canonical coordinates (rk.sk) and (qk,pk) 
respectively and that the first-order x-derivatives of momenta must be eliminated by means 
of the Hamiltonian dynamical equations (2.33). (2.34). 

In the next subsection we shall give some applications of the results stated in this 
proposition. 

2.3. The bi-Hamiltonian structure of a Hknon-Heiles system 

We consider a generalized Htnon-Heiles system with two degrees of freedom. 
Its Hamiltonian is 

where 41.42, P I .  p2 are the canonical coordinates and momenta and no. a,, as are free 
constant parameters. This Hamiltonian encompasses the two cases Q = a4 = 0 and 
a0 = a1 = 0 introduced in [IS]. Moreover Ho is related with the Hamiltonian 

through the map 

41 = q; + - - 28 
A 
2 42 = 4; a0 = -2A + 128 a]  = -A2 + 16AB - 488’. 

(2.38) 

The function HH is the Hamiltonian of a classical integrable Henon-Heiles system [19] 
with the additional term a&qiz. 

The function (2.36) is the Hamiltonian of the the vector field obtained reducing Xo(u)  = 
uI to the stationary manifold MZ given by the fixed points of the flow Xz + cI X I  + czXo 

Mz = {~Iu(’) + IOu.uxu + 2Ou.rxu.r f ~ O U ~ U ’  + CI (uxXz t ~ u , u )  + C Z U ~  = 0) (2.39) 

where CI = -ao/2, cz = -al 12 + a,2/4. 
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It can be obtained specializing to the case n = 2 the Hamiltonian (2.32) of the PI-system. 
In this case HZ’ = HO and the canonical coordinates and momenta are, respectively, 
ql = u 1 / 2 , q z  = e, PI = qls, p2 = 4 2 .  The integrals of motion obtained by the 
reduction of the GD polynomials are 
Ho -L 

fl PO& 

The corresponding Hamiltonian vector fields will be denoted by Xj+l  := EdHj  ( j  = 
0, 1,2); E being the canonical (4 x 4) Poisson matrix. The Henon-Heiles vector field X I  
is: 

The second Hamiltonian formulation can be obtained specializing to the case n = 2 the 
Hamiltonian (2.30) of the &-system: 
H, (0) - -s lsz-gr ,  5 4  + ~ r 1 r 2 - ~ r z - , ~ a o r 1  5 2  1 2  1 3 +#alr l  3 2 + a o r l r 2 - $ a ~ r l - $ a l r ~  (2.42) 

where the canonical coordinates (2.22) and momenta are, respectively, T I  = v1 /2 ,  r2 = 
u2/2 - v:/4, SI = r b ,  sz = rjx.  The integrals of motion obtained by the reduction of the 
GD polynomials are 

KO = -gp02,, = -;a2 
KI = -%pj~~, = HF) 

++air: - fa& + $alrrrz + 45.2’ - gazr: - +a2r2 

(2.43) Kz E -1 2 8ptZlu = -szrz + slszrl + $3; - fr: + 2rlr,Z - :aorf 

and the corresponding Hamiltonian vector fields will be denoted by Yj := E dKj. 
Now we construct the bi-Hamiltonian structure of the Hknon-Heiles system. Let 

M2 be the five-dimensional extended phase space parametrized by (TI, rz, sl, q; az)  or 
(q1,42, P I ,  p2; 4. It is convenient to make use of block notation. So, for example, 
we denote with (r, s; a )  the 5-tuple (rl. rz. S I ,  s2; az), with X = [*. p; ?‘If the generic 
vector field and with d% = [a%/.% a%/as; a t p a l T  the generic gradient of a function 
f (the superscript T means transposition). In this notation a vector field 2 = p d k  with 
Hamiltonian function f with respect to a Poisson tensor will be written 

where Psr = - (P“p , .  . . , etc. From the definition of rl. r2 and 41, 42 in terms of u1 and 
oz. and from (2.40) and (2.43) one obtains the following map: Q : MZ --t Mz, (r. s; a2) H 

(4 ,  P ;  a4) 

41 = rl 42 = (-2r2 - r;)’” 
(2.45) 
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with K2 given by equation (2.43). In these two charts let us consider the extended 
Hamiltonians f i j  and 4. the vector fields 2, (2; = X$, 2; = XJ, 2; = 0) and f, 
(q = 7, $ = 7, = 0). the extension of the canonical Poisson structure 

B : =  -1 0 0 . 3 
The following proposition holds: 

Proposition 2.2. The action of the map @ '  : ' M z  --f M Z  defined by (2.45) on the 
Hamiltonians fij, the vector fields 8 and the Poisson tensor i$ := is given by 
W(fij) = kj, a*(?,) = f j  and by 

(2.46) 1 A -8%; 
1; 0 .-a .- * o  Fa*= [ -AT 0 B -82; 

8(E)T 8(2,P)T 0 

where 

Thus we have recovered in the extended phase space Mz a second Poisson tensor A. 
give rise to the 

(2.47) 

We can check that & is compatible with 
following bi-Hamiltonian hierarchy: 

= %. Furthermore p, and 

" I  

gj+j := 4 dI?j = PodHj+1 (j = 0, 1) 
the Hamiltonians and fiz being Casimirs of 1;o and 4. respectively. 

3. Restricted flows and Garnier systems 

The method of restricted flows was introduced in [ZO] as a non-linearization of the KdV 
spectral problem and was generalized in [5,2]. We formulate this method putting the 
emphasis on the role of the GD polynomials and of their generating function; this formulation 
allaws. us to construct a map between stationary and restricted flows in the next section. In 
view of the applications, we begin by applying the method to the KdV hierarchy, recovering 
the Garnier system. 

Let us consider the following system: 

where: Al. . . . , A,, are distinct fixed parameters, Phk := PI - AkPo (Po and PI being the two 
KdV Poisson tensors (2.4)). This is a system of (n + 2) equations in U. UI, P I ,  . . . , ,9". 
The second equation will be referred to as the P,-restriction of the first KdV flow 
Xo = POU, = ulX, and the last n equations define the kernel of n Poisson tensors extracted 
from the Poisson pencil. On account of (2.14), (2.4) and(2.7) this system is equivalent to 
the following one: , ,  
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where c and fk are free parameters and B A  is just the generating function (2.6) of the GD 
polynomials. 

Using the first two equations to eliminate U and U I  from the last n equations. one gets 
a system of n second-order ODES for 81, . . . , 8.: 

where d := c + 4 2 .  Introducing the so-called eigenfunction variables Qj = ,/$ and the 
momenta x j  = * j x ,  equations (3.3) can be written in canonical Hamiltonian form 

( j  = 1. ... , n)  aKG arc, 
xix = -w *j.r = - 

axi 
with Hamiltonian 

(3.4) 

The corresponding Hamiltonian vector field YG = €dKG is 

€ being the (2n x 2n) canonical Poisson matrix. Equations (3.4) are just the equations of 
the Gamier system with n degrees of freedom [Z]. A set of integrals of motion is 

(3.7) 
with Zj = 2Xc. These integrals were obtained in [23] by means of a Lax 
representation; we shall recover them in the next section by the use of the generating 
function of the GD polynomials. 

Let us consider the ( 2 n i  1) extended phase space Ma with coordinates (*k, xk; d)  and 
the extended Hamiltonian ZG, the vector field j& = f dk:G with c 1:) 

1 [ - 4 ( S ' C 5 T  -4(YCXY 0 

E =  -1, 0, 0 . 

In this space the Gamier system has a second Hamiltonian structure given by 

(3.8) 

where @ denotes the tensor product, * = [*I, .,., *,,IT. x = Ixl, ...,x. IT, A = 
diag(A1,. . . , A n ) .  This structure is an extension of the one constructed in 161 for fk = 
0 , (k = I , .  . , , n), In view of the applications we specialize the above structure to 
the case n = 2, in the fivedimensional extended phase space M Z  with coordinates 
(*I, &, X I ,  Xz; d). The following proposition holds: 

0 A - * @ *  43; 
PI:= -(A-*@*)T x @ + - r l . @ x  43: 
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belongs to the following bi-Hamiltonian Proposition 3.1. The Gamier vector field 3i = 
hierarchy: 

2+i = PI dGj = Po dc,+i ( j  = 0.1) (3.9) 

where the Hamiltonians 61 are given by 

(3.10) 

80 and 62 being Casimirs of '& and PI, respectively, with il, iz being the extensions to 
Mz of the integrals of motion (3.7). 

As in the case of the HBnon-Heiles system, a &Hamiltonian structure for the Gamier 
system seems to naturally exist only in its extended phase space. Nevertheless, in 
subsection 5.3 a realization of the integrability structure introduced in proposition 5.1 will 
be constructed in the original four-dimensional phase space. 

4. A map between stationary and restricted flows 

Now we shall construct a map between the nth stationary flow and the previous restricted 
flow of the KdV hierarchy. To this end we extend the corresponding phase spaces, regarding 
some free parameters in the Hamiltonian functions as additional dynamical variables. 

4.1. The general case 

As for the Pt-formulation of the stationary flow (2.34) we extend its phase space to a 
(3n + l)-dimensional space, fin, with coordinates ( q k ,  pg; ao, ..., an-], a b ) ;  andogonsly 
we consider the Po-formuIation of the first restricted flow (3.4) in the extended space M" 
with coordinates (@L, XX; fi, . . . , f,. d). 

Let us consider the solutions qk of the dynamical equations (2.34); then u")(A) given 
by 

(4.1) 
with q(h)  = 1 + E;=, qjh-j, satisfies (2.17), and consequently satisfies the following 
equation: 

B* (~'"'(h),  d")(h))  = A"a(h) (4.2) 
where, as above, we put U = ut f 2  + ao/4. So, for each n-tuple of distinct complex 
parameters 11, any solution ucO)(h) of (4.2) fulfills the system 

(4.3) 
where V(")(hk) := ~ ( " ) ( h ) , ~ = ~ ~ .  In order to have a solution also satisfying the second 
equation (3.2), the Lagrange interpolation formula can be used [21,22). It allows us to 
represent the polynomial U ( ~ ) ( A )  by 

u'"'(h) = h ( q * ( A ) y  - q, 2 

BA' (~("' (hk) ,  d"'(Ak)) = hF~('a(n,) (k = I ,  . . . , n) 

(4.4) 
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where p(A) = ny=,(A - A i ) ,  and 

(p'(A) means the derivative of p(A) with respect to A). 
Obviously the n functions (4.5) are solutions of the following system: 

Furthermore, p k  satisfy the so-called Bargmann constraint 
n 

( S j  - A j )  = 
j = l  

(4.7) 

as one can verify by means of (4.4). Comparing (4.6) with (3.3). we can state the following: 

Proposition 4.1. Let * : + Mn, (q, p ;  na, ..., an-!, U % )  H (+, x ;  f i ,  . . . , f,,, d )  be 
the nap: 

(4.8) 

(k  = 1, .... n) 

where Hj are the Hamiltonian functions (2.35). If (qk,  pk) are solutions of the stationary 
flows (2.34), then (h. xk) are solutions of the Garnier system (3.4) for fk and d given by 
(4.8). 

Remark 4.1. The function BA is also a generating function of integrals of motion for the 
Gamier system. Indeed evaluating the function B A  by means of (4.4) and eliminating the 
first x-derivatives of X k  by means of the Hamilton equations (3.4). one gets 

(4.9) 

where Zj are the functions (3.7). Taking in this equation the residues at A = A j  it follows 
that the functions I j  are integrals of motion along the flow (3.4). 
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4.2. The map between the HenOn-Heiles and the Garnier system 

Now we specialize the map of proposition 4.1 to the Henon-Heiles and the Gamier systems 
with two degees of freedom: we obtain the surprising result that the H6non-Heiies vector 
field is mapped onto the Gamier vector field. Let us consider the seven-dimensional phase 
space of the H6non-Heiles system ?& with coordinates (q,  p; a*, hl, ad. Similarly, for 
the Garnier systems let us select the parameters f i ,  f2, d and en&& the phase space to a 
seven-dimensional phase space M z ,  with coordinates (e, x; fi, Yzii. d). It is easy to prove 
the following: 

Proposition4.2. Let Y : h& + ~4&, (4, p;a0,01,a4) H (@, x ;  f j ,  f2.d) be defined by 

@I = Ai2 -112 (11 2 + 2A1m - 422P @2 = A;i’2(-A; - 21241 + q;)’/’ 

f, =A;; (-A: +aoA;+alA? - 8H& - 8 H 1 h  + a h )  

f2 = A;’(-G + aoA: + alg - 8H& - 8 H 1 A 2  +a) 

where A12 = A1 - hi. The tangent map Y, maps the extetded Hdnon-Heiles vector fields 
i l , . f 2  (2.47) onto the extended Garnier vector fields $,,24 (3.10): 

Y* (fI) = A \v* (22) = $2.  (4.11) 

and G2 are integrals of motion 

a0 
2 

d = - - (A, + A*) 

Moreover the pull-back of the Garnier integrals of motion 
for the Hdnon-Heiles system 

(4.12) 

The action of the map Y on the Poisson tensor of the Htnon-Heiles system, furnishes a 
new Poisson tensor for the Gamier system compatible with 5. Moreover the action of Y 
on the Poisson tensor l% is given by 

(4.13) 

where 

0 

So the map Y is not a Poisson morphism. However, according to (4.11). the orbits of the 
Hinon-Heiles system are mapped onto the orbits of the Garnier system. 
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5. A new integrability structure 

5.1. The reduced structures of the Hinon-Heiles and the Garnier systems 

In order to have a bi-Hamiltonian hierarchy also in the original phase space for the Hinon- 
Heiles and the Garnier systems, one can try to apply the reduction techniques known from 
the literature [10,24]. In particular, two methods can be followed a restriction to the 
standard phase space or a projection onto it. However, in both cases, these attempts fail. 

As for the HCnon-Heiles system, if the restriction submanifold is chosen to be a leaf 
Si:) of the second natural foliation in MI, the Hamiltonians &I, the vector fields f j  and the 
Poisson structure Fl can be trivially restricted respectively to Hi, X, and E ;  but it turns 
out that PO cannot be restricted. So two integrable Hamiltonian vector fields are obtained 
in St) but not a bi-Hamiltonian hierarchy. 

If n : M z - 4  ~ ~ , ( Q I . ~ ~ . P I ~ P z ; ~ )  H (q1.q2,~1,~2) is the projection map, the 
Hamiltonians Hj and the vector fields Xj cannot be projected onto SI, because they depend 
on the fibre coordinate. Instead, the Poisson tensors and F, are projected onto 

with A, B as in proposition 2.2. Because these operators are compatible and invertible, one 
obtains the following Nijenhuis tensor 1251: 

(5.2) 

and consequently the hierarchy of Poisson tensors Pk := Ni Pfi, k E Z. However, these 
tensors are not invariant along the flow of the H6non-Heiles vector field XI, equation (241). 
In other words XI is neither a symmehy of PO nor of PI, so that these. tensors cannot generate 
a bi-Hanriltonian hierarchy starting from XI. 

As in the case of the Henon-Heiles system, one cannot reduce the bi-Hamiltonian 
structure of the Garnier system with n degrees of freedom onto the restricted phase space. 
If l l  : M ,  4 SA]), (@k. x k :  d )  H (@A, x t )  is the projection map, the Poisson tensor PO 
and PI are projected onto two compatible tensors 

They give rise to the Nijenhuis tensor NG := PG&-' together with the hierarchy of Poisson 
tensor fields Pi := Nk E , k E Z. However, these tensor fields are not invariant along the 
flow of the Garnier vector field Y,  (3.6), so they do not generate a bi-Hamiltonian hierarchy 
starting from YG. 

5.2. A new integrability criterion 

In the previous subsection we have put into evidence some problems arising in the 
geometrical reduction of a bi-Hamiltonian structure from an extended phase space onto 
the original one. As an alternative construction, here we introduce a new integrability 
scheme, weaker than the bi-Hamiltonian one, but living in the standard phase space. We 
shall define this new structure for a generic Hamiltonian system with n degrees of freedom: 
for n = 2 it coincides with the one introduced in [8] for the HCnon-Heiles system with 
the Hamiltonian (2.37) and a4 = 0. As new examples of this integrability structure, the 
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case of the Gamier system with two degrees of freedom will be discussed here whereas 
multidimensional extensions of the HBnon-Heiles system will be presented elsewhere. 

Pmposition 5.1. Let M be a 2n-dimensional Poisson manifold equipped with a Poisson 
tensor Qo,  and ZO a Hamiltonian vector field with Hamiltonian ho: .& = Qodho. Let there 
exist a tensor N : TM + TM and a skew-symmetric tensor Ql : T'M + T M  such that 

Q i  = N Q o .  (5.4) 

Denote by Zi and ai the vector fields and the I-forms obtained, respectively, by the iterated 
action of the tensor N on 20 and its adjoint N' : T * M  + T'M on a. := dho 

Zi : = N ' Z o  ai :=N*'ao (i = 1 , .  ..,n - 1 ) .  (5.5) 

Let there exist n - 1 independent functions hi (i = 1, . . . , n - 1) and (n2 + n - 2)/2 
functions pij (i = 1 , .  . . , n - 1; 0 < j < i )  with p . ~  = 1, ,uii f 0 (i = 1,. . . , n - I ) ,  such 
that the 1-forms ai can be written as 

Under the previous assumptions the following results hold: 
(i) the vector fields Zi satisfy the recursion relations 

Z ; + l = Q o a i + ,  =Qlai ( i = O ,  ..., n-2). (5.7) 

(ii) the functions hi are in involution with respect to the Poisson bracket defined by Qo and 
they are constants of motion for the fields Z, 

{ h i ,  hiIQo = 0 L z i ( h i )  0 (5.8) 

where Lzk denotes the Lie derivative with respect to the vector field Z,. 
(iii) the Hamiltonian system corresponding to the vector field Zo is Liouville-integrable. In 
addition if Q 1  is a Poisson tensor field, then also Z1 is an integrable Hamiltonian vector 
field and the functions hi are in involution also with respect to the Poisson bracket defined 
by Q i .  

Proof: (i) From (5.4) and the skew-symmetry of Qo and Q I  it follows that QoN* = N e o  
and QIN* = N Q I .  Then 

Z i  - Qoal = Zi - Q o f l c ~ o  = 21 - NQOUO = 0 (5.9) 

and the first relation (5.7) is proved by induction since it is 

Zi+1 - Qoaj+l = N Z j  - Q X a i  = N ( Z i  - Qoai). (5.10) 

The second relation (5.7) follows from 

Zj+l - Q I Q  = N Z j  - Q l c ~ y i  = N(Zi - Q o c ~ i ) .  (5.11) 
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(ii) By (5.6). the gradients d h ~  can be expressed for any k in terms of dho 

(5.12) 

where U t i  are the elements of the matrix a-', a being the lower-triangular matrix defined 
by aij = gij (i > j ) ,  aij = 0 (i < j ) ,  (i. j = 0,. . . , n - 1). Thus 

( h i , h j ) ~ ~  : = Wi, Qodhj) 

(5.13) 

and the first relation (5.8) follows from the skew-symmetry of the tensor N"Qo for any m. 
Furthermore 

= 0. (5.14) 

(iii) Since 20 is a Hamiltonian vector field, it is Liouville-integrable on account of'the 
previous result Moreover, since it is 

(hi,hjlQ, : = (dhi, Qidhj) 

(5.15) 

it follows that if Pi is also a Poisson tensor, (, 10, is a Poisson bracket, 21 is a Hamiltonian 
vector field and then it is Liouville-integrable. 

Remark 5.1. The recursion scheme and the integrability of the vector field 20 do not require 
that the skew-symmetric tensor Qt be a Poisson tensor; so M is a Poisson manifold, not a 
bi-Hamiltonian one. 

In view of the applications of the next subsection, it may be worthwhile to remark that 
the results of proposition 5.1 hold hue if the role of Qo and Ql are interchanged; to be 
more precise, one can prove @st as for proposition 5.1): 
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Proposition 5.2. The integrability scheme of proposition 5.1 is still valid if Qo is skew- 
symmebic, Ql is a Poisson tensor and the role of ZO is now played by Zi = Qldho. The 
involution relations (5.8) become [ h t ,  h,)el = 0. 

5.3. The integrability structure of the Hinon-Heiles and the Garnier systems 

In subsection 5.1 we recovered by projection onto the quotient manifold S2 the Nijenhuis 
tensor (5.2) and a hierarchy of compatible Poisson tensors; however, it is not possible to 
associate to these tensors and to the Hhon-Heiles vector field Xt (2.41) a bi-Hamiltonian 
hierarchy of vector fields. Nevertheless it is possible to use these elements to construct an 
example of the integrability structure introduced in proposition 5.2. For this purpose, let us 
make the following choices: 

(i) Ql = E, the vector field 21 := XI (2.41) with Hamiltonian ho := HO (2.36); 
(ii) the tensor field N := N H  (5.2) and Qo := P-2 = N L 2 P ~ ,  with PH as in (5.1); 
(iii) the function hi := HI (2.40) and the functions pij as plo = 0, pi1 = l/q:; 

then it is immediate to check that the conditions of proposition 5.2 are satisfied. Moreover 
the vector field Zo := Qo dho  = P-2 dHo is a new integrable vector field 

1 -2piqi - P242 r 

This integrability structure is related, through the map (2.38). to the one introduced in [SI 
for the Hamiltonian (2.37) with a4 = 0. 

For the Garnier system with two degrees of freedom one can construct an example of the 
integrability structures of proposition 5.1. Indeed if one uses the elements of subsection 5.1 
and makes the following choices: 

(i) Qo :=E, ho := 81 (3.11), Zo := .YG (3.6) ; 
(ii) N := NG' = EP;'. with PG as in (5.3). 81 := P-I =NE'& ; 

A ~ P  . (iii) the functions hi := 6 2  (3.11) , pi0 = 0, pit = -Az#;+A;&21 

then the conditions of proposition 5.1 are satisfied. Moreover the vector field ZI := filly2 
is a new integrable vector field (Yz is the restriction to the submanifold of M2, d = cost, 
of the vector field 32 (3.10)). 

At last, we compute how the map between the standard phase spaces of the Henon- 
Heiles and of the Garnier systems, induced by the map (4.10). acts on the recursion operators 
of the previous integrability structures. 

Proposition 5.3. Let us consider the map Y : (ql, 42. P I ,  n) ++ ($1, +z, XI, x z )  

+I = A t ,  -112 0.1 2 + 21iqi - q,")"' 

xi = x 2  = 

The map Y relates the recursion operators of the Hknon-Heiles and of the Gamier systems: 

$2 = ( A i ~ ) - " ~ ( - 1 ~  - 21241 
(IiPi - qzpz) (LZPI - q z p d  (5.17) 

(112 (1: + 211qi -q;))"' (112 (-1; - 212q1 + q ; f / z  ' 

Y*Nx = NCiq*. 
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6. Concluding remarks 

In this paper we have derived a bi-Hamiltonian formulation for stationary flows, and for the 
first restricted flows of the KdV hierarchy. Our approach amounts to respectively searching 
the kernel of the Poisson pencil and n-Poisson structures extracted from the Poisson pencil 
of the KdV hierarchy. In this approach the generating function of the C D  polynomials 
plays a reIevant role. Moreover it allows us to construct a map between stationary flows 
and restricted flows; in the case of the fifth-order stationary KdV equation, this map relates 
solutions of the Henon-Heiles system to solutions of the Gamier system. However, to obtain 
these results one must extend the phase space of the reduced flows by means of some Free 
parameters naturally contained in the corresponding Hamiltonian functions. This difficulty 
can be overcome, at least if one analyses the complete integrability of a Hamiltonian system 
without requiring an explicit knowledge of a bi-Hamiltonian structure. For this purpose, 
we have introduced a new integrability scheme in the standard phase space, which implies 
Liauville integrability of the reduced Hamiltonian systems. For brevity we have applied this 
scheme only to the Henon-Heiles and the Garnier systems with two degrees of freedom. 
Other examples such as Henon-Heiles type systems with three and four degrees of freedom, 
constructed by means of the reduction method of section 2, will be discussed elsewhere. 
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