On the integrability of stationary and restricted flows of the KdV hierarchy

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1995 J. Phys. A: Math. Gen. 285097
(http://iopscience.iop.org/0305-4470/28/17/034)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.68
The article was downloaded on 02/06/2010 at 01:00

Please note that terms and conditions apply.

On the integrability of stationary and restricted flows of the KdV hierarchy*

G Tondo \dagger
Dipartimento di Scienze Matematiche, Università degli Studi di Trieste, Piaz.le Europa 1, I34127 Trieste, Italy

Received 15 May 1995

Abstract

A bi-Hamiltonian formulation for stationary flows of the Kdv hierarchy is derived in an extended phase space. A map between stationary flows and restricted flows is constructed: in one case it connects an integrable Henon-Heiles system and the Garnier system. Moreover, a new integrability scheme for Hamiltonian systems is proposed that hoids in the standard phase space.

1. Introduction

In recent years there has been an increasing interest for the construction of finitedimensional dynamical systems from soliton equations, through the so-called methods of stationary flows and restricted flows (see [1,2] and references therein). The discovery of suitable sets of coordinates has allowed one to write the reduced systems as physically interesting Hamiltonian systems. In the case of the KdV hierarchy, the q-representation for stationary flows has given rise to the Hénon-Heiles system [3,4], the square eigenfunctions representation for restricted flows has furnished the Neumann and the Garnier systems [5,6]. However the relation between dynamical systems which are obtained through different reduction techniques from the same soliton hierarchy is not clear; moreover a systematic way to find the second Hamiltonian formulation for stationary flows of any order, without the use of a Miura map, is still lacking.

The aim of this paper is to give a contribution in these directions. In particular:
(i) A bi-Hamiltonian formulation for stationary flows of the KdV hierarchy in a suitably extended phase space is derived in a systematic way. As an example, the bi-Hamiltonian structure of Hénon-Heiles-type systems is explicitly shown.
(ii) A map between stationary and restricted flows of the KdV hierarchy is obtained, based on the generating function of the Gelfand-Dickey (GD) polynomials. As an application, a map between an integrable Hénon-Heiles system and the Garnier system with two degrees of freedom is constructed.
(iii) An integrability criterion is proposed, which can be applied to both stationary and restricted flows. Though weaker than the bi-Hamiltonian formulation, it does not require the extension of the phase spaces.

* Work partially supported by the GNFM of the Italian CNR and by the project 'Metodi Geometrici e probabilistici in Fisica Matematica' of the Italian MURST.
\dagger E-mail address: tondo@univ.trieste.it

The paper is organized as follows. In section 2 we construct the stationary flows associated to the the KdV hierarchy through the kernel of the Poisson pencil. Using the generating function of GD polynomials as in [7], we give a bi-Lagrangian and a biHamiltonian formulation of the Lax-Novikov stationary equations of any order; as an application, we exhibit a generalized Hénon-Heiles system.

In sections 3 and 4 we formulate the method of restricted flows in terms of the Poisson pencil instead of the spectral problem as in [5,2]. This formulation allows us to explicitly construct a map between restricted and stationary flows, by means of an appropriate extension of the corresponding phase spaces. The previous map is specialized to the Hénon-Heiles and the Garnier systems.

In section 5 we show that the entire bi-Hamiltonian hierarchy of the Hénon-Heiles and the Garnier systems cannot be reduced from the extended to the standard phase space. For this reason, we propose an integrability criterion holding for a generic finite-dimensional Hamiltonian system. It generalizes the criterion introduced in [8] for the particular case of the Hénon-Heiles system. Though weaker than the bi-Hamiltonian scheme, it assures Liouville-integrability of a Hamiltonian system [9] in its standard phase space, i.e. without the introduction of supplementary coordinates. This criterion is applied to the generalized Hénon-Heiles system and to the Garnier system with two degrees of freedom.

Now we give some preliminaries, mainly to specify notation and terminology. Let M be a n-dimensional manifold. At any point $u \in M$, the tangent and cotangent spaces are denoted by $T_{u} M$ and $T_{u}^{*} M$, the pairing between the two spaces by $\langle\rangle:, T_{u}^{*} M \times T_{u} M \rightarrow \mathbb{R}$. For each smooth function $f \in C^{\infty}(M), \mathrm{d} f$ denotes the differential of $f . M$ is said to be a Poisson manifold if it is endowed with a Poisson bracket $\{\}:, C^{\infty}(M) \times C^{\infty}(M) \rightarrow C^{\infty}(M)$, possibly a degenerate one; the associated Poisson tensor P is defined by $\{f, g\}(u):=$ $\left\langle\mathrm{d} f(u), P_{u} \mathrm{~d} g(u)\right\rangle$. So, at each point u, P_{u} is a linear map $P_{u}: T_{u}^{*} M \rightarrow T_{u} M$, skewsymmetric and with vanishing Schouten bracket [10]. A function $h \in C^{\infty}(M)$ with a non trivial differential d $f \in K e r P$ is called a Casimir of $P: P_{u} \mathrm{~d} f(u)=0$. A map $\Phi: M \rightarrow M$ is a Poisson morphism if $\{f, g\} \circ \Phi=\{f \circ \Phi, g \circ \Phi\}$, for each $f, g \in C^{\infty}(M) ; \Phi$ leaves invariant the Poisson tensor $P: P_{\Phi(u)}=\Phi_{*} P_{u} \Phi^{*}$, where Φ_{*} and Φ^{*} denote, respectively, the tangent and the cotangent maps associated to Φ. In particular, if the Poisson bracket is non-degenerate, i.e. if P is invertible, and the Poisson morphism is a diffeomorphism, Φ defines a symplectic (canonical) transformation. M is said to be a bi-Hamiltonian manifold if it is endowed with two Poisson tensors P_{0} and P_{1} such that the associated pencil $P^{\lambda}:=P_{1}-\lambda P_{0}$ be itself a Poisson tensor for any $\lambda \in \mathbb{C}[11,12]$.

2. Stationary flows and Hénon-Heiles systems

2.1. KdV hierarchy and Gelfand-Dickey polynomials

Let M be a bi-Hamiltonian manifold: if the associated Poisson pencil $P^{\lambda}:=P_{1}-\lambda P_{0}$ admits as a Casimir a formal Laurent series $h(\lambda)$

$$
\begin{equation*}
h(\lambda):=\sum_{j \geqslant 0} h_{j} \lambda^{-j} \tag{2.1}
\end{equation*}
$$

then h_{0} is a Casimir of P_{0} and the coefficients $h_{j}(j \geqslant 1)$ are the Hamiltonian functions of a hierarchy of bi-Hamiltonian vector fields X_{j} :

$$
\begin{equation*}
X_{j}=P_{1} \mathrm{~d} h_{j}=P_{0} \mathrm{~d} h_{j+1} \quad(j \geqslant 0) . \tag{2.2}
\end{equation*}
$$

At any point $u \in M$, the bi-Hamiltonian flows are given by $\mathrm{d} u / \mathrm{d} t_{j}=X_{j}(u), t_{j}$ being the evolution parameter of the j th flow. The vector fields (2.2) are Hamiltonian also with
respect to the Poisson pencil P^{λ}. In fact the recursion relation (2.2) can be written as

$$
\begin{equation*}
X_{j}=P^{\lambda} \mathrm{d} h^{j)}(\lambda) \quad h^{(j)}(\lambda):=\left(\lambda^{j} h(\lambda)\right)_{+} \tag{2.3}
\end{equation*}
$$

where the index + means the projection of a Laurent series onto the purely polynomial part.
Let M be the algebra of polynomials in $u, u_{x}, u_{x x}, \ldots\left(u=u(x)\right.$ is a C^{∞} function of x and the subscript x means the derivative with respect to x), and let P_{0} and P_{1} be the two Poisson tensors of the KdV hierarchy [11]:

$$
\begin{equation*}
P_{0}:=\frac{\mathrm{d}}{\mathrm{~d} x} \quad P_{1}:=\frac{\mathrm{d}^{3}}{\mathrm{~d} x^{3}}+4 u \frac{\mathrm{~d}}{\mathrm{~d} x}+2 u_{x} . \tag{2.4}
\end{equation*}
$$

The gradients of the Casimirs of the associated Poisson pencil P^{λ} can be obtained searching for the 1 -forms $v(\lambda):=\sum_{j \geqslant 0} v_{j} \lambda^{-J}$ which are solutions of the following equation:

$$
\begin{equation*}
B^{\lambda}(v(\lambda), v(\lambda))=a(\lambda) \tag{2.5}
\end{equation*}
$$

where $a(\lambda)=\sum_{j \geqslant-1} a_{j} \lambda^{-j}, a_{j}$ are constant parameters and B^{λ} is the bilinear function

$$
\begin{equation*}
B^{\lambda}\left(w_{1}, w_{2}\right):=w_{1 x x} w_{2}+w_{1} w_{2 x x}-w_{1 x} w_{2 x}+(4 u-\lambda) w_{1} w_{2} \tag{2.6}
\end{equation*}
$$

In fact B^{λ} is related to the Poisson pencil through the relation

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} x} B^{\lambda}\left(w_{1}, w_{2}\right)=w_{1} P^{\lambda} w_{2}+w_{2} P^{\lambda} w_{1} \quad\left(\forall w_{1}, w_{2}\right) \tag{2.7}
\end{equation*}
$$

Equation (2.5) can be solved developing the left-hand side as a Laurent series

$$
\begin{equation*}
B^{\lambda}(v(\lambda), v(\lambda))=\sum_{k \geqslant-1} B_{k} \lambda^{-k} \tag{2.8}
\end{equation*}
$$

so that, for each $a(\lambda)$, it furnishes the coefficients of the solution $v(\lambda)$ (unique up to a sign). The solution corresponding to $\bar{a}(\lambda)=-\lambda$ is the so-called basis solution $\bar{v}(\lambda)$; its first coefficients are
$\bar{v}_{0}=1 \quad \bar{v}_{1}=2 u \quad \bar{v}_{2}=2\left(u_{x x}+3 u^{2}\right) \quad \bar{v}_{3}=2\left(u^{(4)}+5 u_{x}^{2}+10 u_{x x} u+10 u^{3}\right)$
and so on, namely the gradients of the first KdV Hamiltonians. In what follows we shall consider also the 1 -form $v(\lambda)=c(\lambda) \bar{v}(\lambda)$, which is a solution of (2.5) for

$$
\begin{equation*}
a(\lambda)=-\lambda c^{2}(\lambda) \quad c(\lambda)=1+\sum_{j \geqslant 1} c_{j} \lambda^{-j} \tag{2.10}
\end{equation*}
$$

where the coefficients c_{j} are free parameters. In this case the first 1 -forms of the hierarchy are $v_{0}=1, v_{1}=\bar{v}_{1}+c_{1}, v_{2}=\bar{v}_{2}+c_{1} \bar{\nu}_{1}+c_{2}$, and so on.

The coefficient B_{k} in (2.8) can be expressed through the GD polynomials. For each Laurent series $v(\lambda)$ let us consider the functions $B^{(k)}(\lambda):=B^{\lambda}\left(v(\lambda), v^{(k)}(\lambda)\right)$, where $v^{(k)}(\lambda):=\left(\lambda^{k} v(\lambda)\right)_{+} ;$these functions have the form

$$
\begin{equation*}
B^{(k)}(\lambda)=\lambda^{k+1} v_{0}^{2}+\sum_{j=1}^{k-1} \lambda^{k-j}\left(p_{0 j}-v_{0} v_{j+1}\right)+\sum_{j \geqslant 0} \lambda^{-j} p_{j k} \quad\left(j, k \in \mathbb{N}_{0}\right) \tag{2.11}
\end{equation*}
$$

It can be shown that

$$
\begin{equation*}
B_{-1}=-v_{0}^{2} \quad B_{k}=p_{0 k}-v_{0} v_{k+1} \quad\left(k \in \mathbb{N}_{0}\right) \tag{2.12}
\end{equation*}
$$

Furthermore, if $v(\lambda)$ is a solution of (2.5), the coefficients $p_{j k}$ in (2.11) are polynomials in u and its x-derivatives. They will be referred to as Gelfand-Dickey (GD) polynomials and the function B^{λ} as their generating function.

The fundamental property of the GD polynomials, stemming from (2.11), (2.5), (2.7), (2.3), is the following relation with the gradients $v_{j}:=\mathrm{d} h_{j}$ and the bi-Hamiltonian vector fields X_{k} :

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} x} p_{j k}=v_{j} X_{k} \tag{2.13}
\end{equation*}
$$

We report some GD polynomials to be used in what follows ($v_{0}=1$):

$$
\begin{aligned}
& p_{00}=4 u-v_{1} \\
& p_{01}=8 u v_{1}-v_{1}^{2}-v_{2}+2 v_{1 x x} \\
& p_{02}=4 u v_{1}^{2}+8 u v_{2}-2 v_{1} v_{2}-v_{3}-v_{1 x}^{2}+2 v_{1} v_{1 x x}+2 v_{2 x x} \\
& p_{12}=8 u v_{1} v_{2}-v_{2}^{2}+4 u v_{3}-v_{1} v_{3}-v_{4}+2 v_{1 x} v_{2 x}+2 v_{2} v_{1 x x}+2 v_{1} v_{2 x x}+v_{3 x x} \\
& p_{k k}=2 v_{k x x} v_{k}-v_{k x}^{2}+4 u v_{k}^{2}
\end{aligned}
$$

The GD polynomials corresponding to the basis solution $\bar{v}(\lambda)$ are the polynomials defined in [1, proposition 12.1.12].

2.2. The method of stationary flows

The method of stationary flows [13-15] was developed in order to reduce the flows of the KdV hierarchy onto the set M_{n} of fixed points of the nth flow X_{n} of the hierarchy:

$$
\begin{equation*}
M_{n}:=\left\{u \mid X_{n}\left(u, u_{x}, \ldots, u^{(2 n+1)}\right)=0\right\} \tag{2.15}
\end{equation*}
$$

As M_{n} is odd-dimensional it cannot be a symplectic manifold; nevertheless we will show that it is a bi-Hamiltonian manifold: it will be referred to as extended phase space. Moreover, M_{n} is naturally foliated, on account of (2.2) and (2.4), by a one-parameter family of $2 n$ dimensional submanifolds S_{n} given by

$$
\begin{equation*}
S_{n}:=\left\{u \mid v_{n+1}\left(u, u_{x}, \ldots, u^{(2 n)}\right)=c\right\} \tag{2.16}
\end{equation*}
$$

(c being a constant parameter), which are invariant manifolds with respect to each vector field of the KdV hierarchy, due to the invariance of the 1 -forms v_{k}. So M_{n} can be parametrized naturally by v_{1}, \ldots, v_{n+1} and by their x-derivatives $v_{1 x}, \ldots, v_{n x}$. We shall use these coordinates in what follows.

Here we perform two different stationary reductions of the KdV flows by improving the procedure introduced in [7]. On one side, we choose as a reduction submanifold $S_{n}^{(0)}$ just the leaf S_{n} of the foliation (2.16) corresponding to $c=0$; it is a level set of the GD polynomial $p_{0 n}$, due to (2.5), (2.8), (2.12). On account of equation (2.13), the GD polynomials $p_{j n}$, restricted to M_{n}, are also invariant with respect to each flow of the hierarchy; thus we can choose as a second reduction submanifold $S_{n}^{(1)}$ a level set of $p_{n n}$. The one-parameter family of the level sets of $p_{n n}$ forms a foliation of the manifold M_{n} different from the previous one. Finally we construct the bi-Hamiltonian structure in the ground manifold M_{n}.

From the computational point of view, one proceeds as follows.
(i) Due to (2.3) and (2.5), the manifold M_{n} is defined by the solutions u of the equation

$$
\begin{equation*}
B^{\lambda}\left(v(\lambda), v^{(n)}(\lambda)\right)=\lambda^{n} a(\lambda) \tag{2.17}
\end{equation*}
$$

where $v(\lambda)=\sum_{j=0}^{n} v_{j} \lambda^{-j}, a(\lambda)=\sum_{j=-1}^{2 n} a_{j} \lambda^{-j}$. In particular, if $a(\lambda)=-\lambda c^{2}(\lambda)$, as in (2.10), M_{n} is given by

$$
\begin{equation*}
M_{n}=\left\{u \mid \bar{X}_{n}+\sum_{j=1}^{n} c_{j} \bar{X}_{n-j}=0\right\} \tag{2.18}
\end{equation*}
$$

i.e. by the solutions of the Lax-Novikov equations [13]. Taking into account (2.11) and choosing $a_{-1}=-1$, by equating in equation (2.17) the coefficients of λ^{n+1} we get $v_{0}^{2}=1$; from now on we put $v_{0}=1$. Moreover, equating the coefficients of the other powers of λ we get the following system:
$p_{0 k}-v_{k+1}=a_{k} \quad(k=0, \ldots, n-1) \quad p_{j n}=a_{n+j} \quad(j=0, \ldots, n)$.
(ii) In order to obtain the first Poisson tensor P_{0}, we eliminate $u=v_{1} / 2+a_{0} / 4$ from (2.19) using the first equation ($k=0$) and we extract the system of n second-order ODEs in the $v_{j}(j=1, \ldots, n)$:

$$
\begin{equation*}
p_{0 k}-v_{k+1}=a_{k} \quad(k=1, \ldots, n-1) \quad p_{0 n}=a_{n} \tag{2.20}
\end{equation*}
$$

which will be referred to as P_{0}-system. The remaining equations (2.19) will furnish a set of n independent integrals of motion. In order to obtain a second Poisson structure, we consider the following system: (P_{1}-system)

$$
\begin{equation*}
p_{0 k}-v_{k+1}=a_{k} \quad(k=1, \ldots, n-1) \quad p_{n n}=a_{2 n} \tag{2.21}
\end{equation*}
$$

with u as above.
(iii) The system (2.20) can be written in Lagrangian form. For this purpose, we use the socalled Newton or r-representation introduced in [16]. Namely, we choose as new coordinates in $S_{n}^{(0)}$ the first n coefficients r_{j} of the formal series $r(\lambda):=\sqrt{v(\lambda)}$;

$$
\begin{equation*}
r_{k}=\Delta_{-k}(\sqrt{v(\lambda)}) \quad(k=1, \ldots, n) \tag{2.22}
\end{equation*}
$$

where Δ_{k} means the coefficient of λ^{k} in a Laurent series. Taking into account (2.17), and observing that $2 r_{n+1}=-\sum_{j=1}^{n} r_{j} r_{n+1-j}$, equations (2.20) are equivalent to

$$
\begin{equation*}
\left(\lambda^{n}\left(r_{x x}+\left(r_{1}+\frac{a_{0}-\lambda}{4}\right) r-\frac{a}{4 r^{3}}\right)\right)_{+}=0 \tag{2.23}
\end{equation*}
$$

This system is Lagrangian, with Lagrangian function

$$
\begin{equation*}
L_{n}^{(0)}=\Delta_{-(n+1)}(\mathcal{L}(\lambda ; r(\lambda)) \tag{2.24}
\end{equation*}
$$

where $\mathcal{L}(\lambda ; w(\lambda))$ is given, for each Laurent series $w(\lambda)$, by

$$
\begin{equation*}
\mathcal{L}(\lambda ; w(\lambda)):=\frac{1}{2}\left(w_{x}(\lambda)\right)^{2}-\frac{1}{2}\left(w_{1}+\frac{a_{0}-\lambda}{4}\right) w^{2}(\lambda)-\frac{a(\lambda)}{8 w^{2}(\lambda)} . \tag{2.25}
\end{equation*}
$$

The Lagrangian gradients

$$
\frac{\delta}{\delta r_{k}}:=\frac{\partial}{\partial r_{k}}-\frac{\mathrm{d}}{\mathrm{dx}} \frac{\partial}{\partial r_{\mathrm{kx}}}
$$

of $L_{n}^{(0)}$ are
$\frac{\delta L_{n}^{(0)}}{\delta r_{k}}=\Delta_{k-1}\left(\lambda^{n}\left(-r_{x x}-\left(r_{1}+\frac{a_{0}-\lambda}{4}\right) r+\frac{a}{4 r^{3}}\right)\right)_{+} \quad(k=1, \ldots, n)$.
We remark that it is also possible to put also the P_{i}-system (2.21) in Lagrangian form. For this purpose, we take as coordinates in $S_{n}^{(1)} q_{k}=r_{k}(k=1, \ldots, n-1)$ and $q_{n}=\sqrt{-v_{n}}$. By this choice the system (2.21) is equivalent to

$$
\begin{align*}
& \frac{1}{2} q_{n}^{2}+\left(\lambda^{n-1}\left(q_{x x}+\left(q_{1}+\frac{a_{0}-\lambda}{4}\right) q-\frac{a}{4 q^{3}}\right)\right)_{+}=0 \tag{2.27}\\
& q_{n x x}+\left(q_{1}+\frac{a_{0}}{4}\right) q_{n}-\frac{a_{2 n}}{4 q_{n}^{3}}=0
\end{align*}
$$

where $\left(\lambda^{n-1} q(\lambda)\right)_{+}:=\left(\lambda^{n-1} \sqrt{v(\lambda)}\right)_{+}$. This is a Lagrangian system with Lagrangian

$$
\begin{equation*}
L_{n}^{(\mathrm{I})}=\Delta_{-n}\left(\mathcal{L}(\lambda ; q(\lambda))+\frac{1}{2} q_{n x}^{2}-\frac{1}{2}\left(q_{1}+\frac{a_{0}}{4}\right) q_{n}^{2}-\frac{a_{2 n}}{8 q_{n}^{2}} .\right. \tag{2.28}
\end{equation*}
$$

Indeed it can be verified that the Lagrangian gradients of $L_{n}^{(1)}$ are
$\frac{\delta L_{n}^{(1)}}{\delta q_{1}}=\Delta_{0}\left(\lambda^{n-1}\left(-q_{x x}-\left(q_{1}+\frac{a_{0}-\lambda}{4}\right) q+\frac{a}{4 q^{3}}\right)\right)_{+}-\frac{1}{2} q_{n}^{2}$
$\frac{\delta L_{n}^{(1)}}{\delta q_{k}}=\Delta_{k-1}\left(\lambda^{n-1}\left(-q_{x x}-\left(q_{1}+\frac{a_{0}-\lambda}{4}\right) q+\frac{a}{4 q^{3}}\right)\right)_{+} \quad(k=2, \ldots, n-1)$
$\frac{\delta L_{n}^{(1)}}{\delta q_{n}}=-q_{n x x}-\left(q_{1}+\frac{a_{0}}{4}\right) q_{n}+\frac{a_{2 n}}{4 q_{n}^{3}}$.
The two previous Lagrangian systems can be put in canonical Hamiltonian form. For the P_{0}-system the canonical momenta are $s_{n+1-k}=r_{k x}(k=1, \ldots, n)$ and the Hamiltonian function

$$
\begin{equation*}
H_{n}^{(0)}=\Delta_{-(n+1)}(\mathcal{H}(\lambda ; r(\lambda), s(\lambda))) \tag{2.30}
\end{equation*}
$$

where $s(\lambda)=\sum_{j=1}^{n} s_{j} \lambda^{-j}$ and $\mathcal{H}(\lambda ; w(\lambda), z(\lambda))$ is given by
$\mathcal{H}(\lambda ; w(\lambda), z(\lambda))=\frac{1}{2} z^{2}(\lambda)+\frac{1}{2}\left(w_{1}+\frac{a_{0}-\lambda}{4}\right) w^{2}(\lambda)+\frac{a(\lambda)}{8 w^{2}(\lambda)}$.
For the P_{1}-system the canonical momenta are $p_{n}=q_{n x}, p_{n-k}=q_{k x}(k=1, \ldots, n-1)$, and the Hamiltonian function is

$$
\begin{equation*}
H_{n}^{(1)}=\Delta_{-n}(\mathcal{H}(\lambda ; q(\lambda), p(\lambda)))+\frac{1}{2} p_{n}^{2}+\frac{1}{2}\left(q_{1}+\frac{a_{0}}{4}\right) q_{n}^{2}+\frac{a_{2 n}}{8 q_{n}^{2}} \tag{2.32}
\end{equation*}
$$

with $p(\lambda)=\sum_{j=1}^{n} p_{j} \lambda^{-j}$.
The two Hamiltonian functions depend, respectively, on the two sets of coordinates and momenta $\left(r_{k}, s_{k}\right),\left(q_{k}, p_{k}\right)$ and on the two sets of free parameters ($a_{0}, \ldots, a_{n-1}, a_{n}$) and $\left(a_{0}, \ldots, a_{n-1}, a_{2 n}\right)$.
(iv) Now let us consider the manifold $M_{n}(2.18)$, which can be parametrized either by (r_{k}, s_{k}, a_{n}), or by ($q_{k}, p_{k}, a_{2 n}$), with a_{n} and $a_{2 n}$ as additional dynamical variables in M_{n}. On this manifold one can trivially extend the canonical Poisson structures, the Hamiltonians and the vector fields associated with each one of the two systems as in [17]. In particular the vector fields can be extended in such a way that they are tangent to one of the foliations $S_{a_{n}}^{(0)}$ and $S_{u_{2 n}}^{(1)}$. Taking into account, on one side, the relation between the two sets of coordinates through the original variables ($v_{k}, v_{k x}$), and on the other side the relation between the two integrals of motion a_{n} and $a_{2 n}$ through the GD polynomials $p_{0 n}$ and $p_{n n}$, a map $\Phi: M_{n} \rightarrow M_{n},\left(r_{k}, s_{k}, a_{n}\right) \mapsto\left(q_{k}, p_{k}, a_{2 n}\right)$ can be systematically constructed. It relates the Hamiltonians and the vector fields of one system with the corresponding ones of the other system. Since this map is not a Poisson morphism, the extended canonical Poisson structures associated with one chart are mapped onto a Poisson structure different from the extended canonical structure associated with the other chart. If this second Poisson tensor is compatible with the extended canonical one, a bi-Hamiltonian formulation of the two systems is obtained.

In conclusion we can state the following:

Proposition 2.1. The P_{0}-system (2.20) and the P_{1}-system (2.21), written respectively in the coordinates r_{k} and q_{k} are natural Lagrangian systems. The corresponding canonical Hamiltonian systems

$$
\begin{array}{ll}
r_{k x}=\frac{\partial H_{n}^{(0)}}{\partial s_{k}} & s_{k x}=-\frac{\partial H_{n}^{(0)}}{\partial r_{k}} \\
q_{k x}=\frac{\partial H_{n}^{(1)}}{\partial p_{k}} & p_{k x}=-\frac{\partial H_{n}^{(1)}}{\partial q_{k}} \tag{2.34}
\end{array}
$$

have n integrals of motion given by
$K_{j} \equiv-\frac{1}{8} p_{j n_{i Y}}=a_{n+j} \quad(j=1, \ldots, n) \quad H_{j} \equiv-\frac{1}{8} p_{j n_{1 X}}=a_{n+j} \quad(j=0, \ldots, n-1)$.

Moreover, the map $\Phi: M_{n} \rightarrow M_{n}$ in the extended phase space generates a second Poisson structure.

Remark 2.1. The symbols $\mid Y$ and $\mid X$ in (2.35) mean that, in the GD polynomials $p_{j k}$, the coordinates ($v_{k}, v_{k x}$) must be replaced by the canonical coordinates (r_{k}, s_{k}) and (q_{k}, p_{k}) respectively and that the first-order x-derivatives of momenta must be eliminated by means of the Hamiltonian dynamical equations $(2,33),(2.34)$.

In the next subsection we shall give some applications of the results stated in this proposition.

2.3. The bi-Hamiltonian structure of a Hénon-Heiles system

We consider a generalized Hénon-Heiles system with two degrees of freedom.
Its Hamiltonian is

$$
\begin{equation*}
H_{0}=\frac{1}{2}\left(p_{1}^{2}+p_{2}^{2}\right)+q_{1}^{3}+\frac{1}{2} q_{1} q_{2}^{2}+\frac{a_{4}}{8 q_{2}^{2}}+\frac{a_{0}}{2}\left(q_{1}^{2}+\frac{1}{4} q_{2}^{2}\right)-\frac{a_{1}}{4} q_{1} \tag{2.36}
\end{equation*}
$$

where $q_{1}, q_{2}, p_{1}, p_{2}$ are the canonical coordinates and momenta and a_{0}, a_{1}, a_{4} are free constant parameters. This Hamiltonian encompasses the two cases $a_{0}=a_{4}=0$ and $a_{0}=a_{1}=0$ introduced in [18]. Moreover H_{0} is related with the Hamiltonian

$$
\begin{equation*}
H_{H}=\frac{1}{2}\left(p_{1}^{2}+p_{2}^{2}\right)+\frac{1}{2}\left(A q_{1}^{\prime 2}+B q_{2}^{\prime 2}\right)+q_{1}^{\prime 3}+\frac{1}{2} q_{1}^{\prime} q_{2}^{\prime 2}+\frac{a_{4}}{8 q_{2}^{\prime 2}} \tag{2.37}
\end{equation*}
$$

through the map

$$
\begin{equation*}
q_{1}=q_{1}^{\prime}+\frac{A}{2}-2 B \quad q_{2}=q_{2}^{\prime} \quad a_{0}=-2 A+12 B \quad a_{1}=-A^{2}+16 A B-48 B^{2} . \tag{2.38}
\end{equation*}
$$

The function H_{H} is the Hamiltonian of a classical integrable Hénon-Heiles system [19] with the additional term $a_{4} / 8 q_{2}^{\prime 2}$.

The function (2.36) is the Hamiltonian of the the vector field obtained reducing $X_{0}(u)=$ u_{x} to the stationary manifold M_{2} given by the fixed points of the flow $X_{2}+c_{1} X_{1}+c_{2} X_{0}$
$M_{2}=\left\{u \mid u^{(5)}+10 u_{x x x} u+20 u_{x x} u_{x}+30 u_{x} u^{2}+c_{1}\left(u_{x x x}+6 u_{x} u\right)+c_{2} u_{x}=0\right\}$
where $c_{1}=-a_{0} / 2, c_{2}=-a_{1} / 2+a_{0}^{2} / 4$.

It can be obtained specializing to the case $n=2$ the Hamiltonian (2.32) of the P_{1}-system. In this case $H_{2}^{(1)}=H_{0}$ and the canonical coordinates and momenta are, respectively, $q_{1}=v_{1} / 2, q_{2}=\sqrt{-v_{2}}, p_{1}=q_{1 x}, p_{2}=q_{2 x}$. The integrals of motion obtained by the reduction of the GD polynomials are
$H_{0} \equiv-\frac{1}{8} p_{02_{\mid x}}$
$H_{2}=-\frac{1}{8} p_{22_{\mid X}}=-\frac{a_{4}}{8}$
$H_{1} \equiv-\frac{1}{8} p_{12 \mid x}=p_{2}^{2} q_{1}-p_{1} p_{2} q_{2}-\frac{1}{2} q_{1}^{2} q_{2}^{2}-\frac{1}{8} q_{2}^{4}+\frac{a_{4} q_{1}}{4 q_{2}^{2}}-\frac{a_{0}}{4} q_{1} q_{2}^{2}+\frac{a_{1}}{8} q_{2}^{2}$.
The corresponding Hamiltonian vector fields will be denoted by $X_{j+1}:=E \mathrm{~d} H_{j}(j=$ $0,1,2) ; E$ being the canonical (4×4) Poisson matrix. The Henon-Heiles vector field X_{1} is:

$$
\begin{equation*}
X_{1}=\left[p_{1}, p_{2},-3 q_{1}^{2}-\frac{1}{2} q_{2}^{2}-a_{0} q_{1}+\frac{a_{1}}{4},-q_{1} q_{2}+\frac{a}{4 q_{2}^{3}}-\frac{a_{0}}{4} q_{2}\right]^{\mathrm{T}} \tag{2.41}
\end{equation*}
$$

The second Hamiltonian formulation can be obtained specializing to the case $n=2$ the Hamiltonian (2.30) of the P_{0}-system:
$H_{2}^{(0)}=s_{1} s_{2}-\frac{5}{8} r_{1}^{4}+\frac{5}{2} r_{1}^{2} r_{2}-\frac{1}{2} r_{2}^{2}-\frac{1}{2} a_{0} r_{1}^{3}+\frac{3}{8} a_{1} r_{1}^{2}+a_{0} r_{1} r_{2}-\frac{1}{4} a_{2} r_{1}-\frac{1}{4} a_{1} r_{2}$
where the canonical coordinates (2.22) and momenta are, respectively, $r_{1}=v_{1} / 2, r_{2}=$ $v_{2} / 2-v_{1}^{2} / 4, s_{1}=r_{2 x}, s_{2}=r_{1 x}$. The integrals of motion obtained by the reduction of the GD polynomials are

$$
\begin{gather*}
K_{0} \equiv-\frac{1}{8} p_{02_{\mid Y}}=-\frac{1}{8} a_{2} \\
K_{1} \equiv-\frac{1}{8} p_{12 \mid Y}=H_{2}^{(0)} \tag{2.43}\\
K_{2} \equiv-\frac{1}{8} p_{22_{\mid Y}}=-s_{2}^{2} r_{2}+s_{1} s_{2} r_{1}+\frac{1}{2} s_{1}^{2}-\frac{1}{2} r_{1}^{5}+2 r_{1} r_{2}^{2}-\frac{3}{8} a_{0} r_{1}^{4} \\
+\frac{1}{4} a_{1} r_{1}^{3}-\frac{1}{2} a_{0} r_{1}^{2} r_{2}+\frac{1}{2} a_{1} r_{1} r_{2}+\frac{1}{2} a_{0} r_{2}^{2}-\frac{1}{8} a_{2} r_{1}^{2}-\frac{1}{4} a_{2} r_{2}
\end{gather*}
$$

and the corresponding Hamiltonian vector fields will be denoted by $Y_{j}:=E \mathrm{~d} K_{j}$,
Now we construct the bi-Hamiltonian structure of the Henon-Heiles system. Let M_{2} be the five-dimensional extended phase space parametrized by ($r_{1}, r_{2}, s_{1}, s_{2} ; a_{2}$) or ($q_{1}, q_{2}, p_{1}, p_{2} ; a_{4}$). It is convenient to make use of block notation. So, for example, we denote with $(r, s ; a)$ the 5 -tuple $\left(r_{1}, r_{2}, s_{1}, s_{2} ; a_{2}\right)$, with $\tilde{X}=\left[\tilde{X}^{r}, \tilde{X}^{s} ; \tilde{X}^{a}\right]^{\mathrm{T}}$ the generic vector field and with $\mathrm{d} \tilde{K}=[\partial \tilde{K} / \partial r, \partial \tilde{K} / \partial s ; \partial \tilde{K} / \partial a]^{T}$ the generic gradient of a function \tilde{K} (the superscript T means transposition). In this notation a vector field $\tilde{X}=\tilde{P} \mathrm{~d} \tilde{K}$ with Hamiltonian function \tilde{K} with respect to a Poisson tensor \tilde{P} will be written

$$
\left[\begin{array}{l}
\tilde{X}^{r} \tag{2.44}\\
\tilde{X}^{s} \\
\tilde{X}^{a}
\end{array}\right]=\left[\begin{array}{lll}
P^{r r} & P^{r s} & P^{r a} \\
P^{s r} & P^{s s} & P^{s a} \\
P^{a r} & P^{a s} & P^{a a}
\end{array}\right]\left[\begin{array}{l}
\frac{\partial \tilde{X}}{\partial r} \\
\frac{\partial \bar{K}}{\partial s} \\
\frac{\partial \bar{K}}{\partial a}
\end{array}\right]
$$

where $P^{s r}=-\left(P^{r s}\right)^{\mathrm{T}}, \ldots$, etc. From the definition of r_{1}, r_{2} and q_{1}, q_{2} in terms of v_{1} and v_{2}, and from (2.40) and (2.43) one obtains the following map: $\Phi: M_{2} \rightarrow M_{2},\left(r, s ; a_{2}\right) \mapsto$ $\left(q, p ; a_{4}\right)$

$$
\begin{array}{ll}
q_{1}=r_{1} & q_{2}=\left(-2 r_{2}-r_{1}^{2}\right)^{1 / 2} \\
p_{1}=s_{2} & p_{2}=-\frac{s_{1}+r_{1} s_{2}}{\left(-2 r_{2}-r_{1}^{2}\right)^{1 / 2}} \quad a_{4}=-8 K_{2} \tag{2.45}
\end{array}
$$

with K_{2} given by equation (2.43). In these two charts let us consider the extended Hamiltonians \tilde{H}_{j} and \tilde{K}_{j}, the vector fields $\tilde{X}_{j}\left(\tilde{X}_{j}^{r}=X_{j}^{r}, \tilde{X}_{j}^{s}=X_{j}^{s}, \tilde{X}_{j}^{a}=0\right)$ and \tilde{Y}_{j} $\left(\tilde{Y}_{j}^{r}=Y_{j}^{r}, \tilde{Y}_{j}^{s}=Y_{j}^{s}, \tilde{Y}_{j}^{a}=0\right)$, the extension of the canonical Poisson structure

$$
\tilde{E}:=\left(\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) .
$$

The following proposition holds:
Proposition 2.2. The action of the map $\Phi: M_{2} \rightarrow M_{2}$ defined by (2.45) on the Hamiltonians \tilde{H}_{j}, the vector fields \tilde{Y}_{j} and the Poisson tensor $\tilde{P}_{0}^{\prime}:=\tilde{E}$ is given by $\Phi^{*}\left(\tilde{H}_{j}\right)=\tilde{K}_{j}, \Phi_{*}\left(\tilde{Y}_{j}\right)=\tilde{X}_{j}$ and by

$$
\tilde{P}_{0}:=\Phi_{*} \tilde{P}_{0}^{\prime} \Phi^{*}=\left[\begin{array}{ccc}
0 & A & -8 \tilde{X}_{2}^{q} \tag{2.46}\\
-A^{\mathrm{T}} & B & -8 \tilde{X}_{2}^{p} \\
8\left(\tilde{X}_{2}^{q}\right)^{\mathrm{T}} & 8\left(\tilde{X}_{2}^{p}\right)^{\mathrm{T}} & 0
\end{array}\right]
$$

where

$$
A=\frac{1}{q_{2}^{2}}\left(\begin{array}{cc}
0 & -q_{2} \\
-q_{2} & 2 q_{1}
\end{array}\right) \quad B=\frac{1}{q_{2}^{2}}\left(\begin{array}{cc}
0 & -p_{2} \\
p_{2} & 0
\end{array}\right) .
$$

Thus we have recovered in the extended phase space M_{2} a second Poisson tensor \tilde{P}_{0}. We can check that \tilde{P}_{0} is compatible with $\tilde{P}_{1}=\tilde{E}$. Furthermore \tilde{P}_{0} and \tilde{P}_{1} give rise to the following bi-Hamiltonian hierarchy:

$$
\begin{equation*}
\tilde{X}_{j+1}:=\tilde{P}_{1} \mathrm{~d} \tilde{H}_{j}=\tilde{P}_{0} \mathrm{~d} \tilde{H}_{j+1} \quad(j=0,1) \tag{2.47}
\end{equation*}
$$

the Hamiltonians \tilde{H}_{0} and \tilde{H}_{2} being Casimirs of \tilde{P}_{0} and \tilde{P}_{1}, respectively.

3. Restricted flows and Garnier systems

The method of restricted flows was introduced in [20] as a non-linearization of the KdV spectral problem and was generalized in $[5,2]$. We formulate this method putting the emphasis on the role of the GD polynomials and of their generating function; this formulation allows us to construct a map between stationary and restricted flows in the next section. In view of the applications, we begin by applying the method to the KdV hierarchy, recovering the Garnier system.

Let us consider the following system:
$p_{00}-v_{1}=a_{0} \quad P_{0}\left(v_{1}-\sum_{j=1}^{n} \beta_{j}\right)=0 \quad P^{\lambda_{k}} \beta_{k}=0 \quad(k=1, \ldots, n)$
where: $\lambda_{1}, \ldots, \lambda_{n}$ are distinct fixed parameters, $P^{\lambda_{k}}:=P_{1}-\lambda_{k} P_{0}$ (P_{0} and P_{1} being the two KdV Poisson tensors (2.4)). This is a system of ($n+2$) equations in $u, v_{1}, \beta_{1}, \ldots, \beta_{n}$. The second equation will be referred to as the P_{0}-restriction of the first KdV flow $X_{0}=P_{0} v_{1}=v_{1 x}$, and the last n equations define the kernel of n Poisson tensors extracted from the Poisson pencil. On account of (2.14), (2.4) and(2.7) this system is equivalent to the following one:

$$
\begin{equation*}
u=\frac{v_{1}}{2}+\frac{a_{0}}{4} \quad v_{1}=\sum_{j=1}^{n} \beta_{j}+c \quad B^{\lambda_{k}}\left(\beta_{k}, \beta_{k}\right)=f_{k} \tag{3.2}
\end{equation*}
$$

where c and f_{k} are free parameters and B^{λ} is just the generating function (2.6) of the GD polynomials.

Using the first two equations to eliminate u and v_{1} from the last n equations, one gets a system of n second-order ODEs for $\beta_{1}, \ldots, \beta_{n}$:

$$
\begin{equation*}
2 \beta_{k x x} \beta_{k}-\beta_{k x}^{2}+2 \beta_{k}^{2}\left(\sum_{j=1}^{n} \beta_{j}+d\right)-\lambda_{k} \beta_{k}^{2}=f_{k} \quad(k=1, \ldots, n) \tag{3.3}
\end{equation*}
$$

where $d:=c+a_{0} / 2$. Introducing the so-called eigenfunction variables $\psi_{j}=\sqrt{\beta_{j}}$ and the momenta $\chi_{j}=\psi_{j x}$, equations (3.3) can be written in canonical Hamiltonian form

$$
\begin{equation*}
\psi_{j x}=\frac{\partial \mathcal{K}_{G}}{\partial \chi_{j}} \quad \chi_{j x}=-\frac{\partial \mathcal{K}_{G}}{\partial \psi_{j}} \quad(j=1, \ldots, n) \tag{3.4}
\end{equation*}
$$

with Hamiltonian

$$
\begin{equation*}
\mathcal{K}_{G}=\frac{1}{2} \sum_{j=1}^{n} \chi_{j}^{2}+\frac{1}{8}\left[\left(\sum_{k=1}^{n} \psi_{j}^{2}\right)^{2}-\sum_{j=1}^{n}\left(\lambda_{j}-2 d\right) \psi_{j}^{2}+\sum_{j=1}^{n} \frac{f_{j}}{\psi_{j}^{2}}\right] \tag{3.5}
\end{equation*}
$$

The corresponding Hamiltonian vector field $\mathcal{Y}_{G}=\mathcal{E} \mathrm{d} \mathcal{K}_{G}$ is
$\mathcal{Y}_{G}=\left[\chi_{j},-\frac{1}{2}\left(\psi_{1}^{2}+\psi_{2}^{2}\right) \psi_{j}+\frac{1}{4}\left(\lambda_{j}-2 d\right) \psi_{j}+\frac{f_{j}}{4 \psi_{j}^{3}}\right]^{\mathrm{T}} \quad(j=1, \ldots, n)$
\mathcal{E} being the ($2 n \times 2 n$) canonical Poisson matrix. Equations (3.4) are just the equations of the Garnier system with n degrees of freedom [2]. A set of integrals of motion is

$$
\begin{align*}
I_{j}=\chi_{j}^{2}+\frac{\psi_{j}^{2}}{4} & \left(2 d-\lambda_{j}+\sum_{k=1}^{n} \psi_{k}^{2}\right) \\
& +\frac{f_{j}}{4 \psi_{j}^{2}}+\sum_{\substack{k=1 \\
k \neq j}}^{n} \frac{1}{4 \lambda_{j k}}\left(\frac{f_{j} \psi_{k}^{2}}{\psi_{j}^{2}}+\frac{f_{k} \psi_{j}^{2}}{\psi_{k}^{2}}+\left(\psi_{j} \chi_{k}-\psi_{k} \chi_{j}\right)^{2}\right) \tag{3.7}
\end{align*}
$$

with $\sum_{j=1}^{n} I_{j}=2 \mathcal{K}_{G}$. These integrals were obtained in [23] by means of a Lax representation; we shall recover them in the next section by the use of the generating function of the GD polynomials.

Let us consider the ($2 n+1$) extended phase space \mathcal{M}_{2} with coordinates ($\psi_{k}, \chi_{k} ; d$) and the extended Hamiltonian $\tilde{\mathcal{K}}_{G}$, the vector field $\tilde{\mathcal{Y}}_{G}=\tilde{\mathcal{E}} \mathrm{d} \tilde{\mathcal{K}}_{G}$ with

$$
\tilde{\varepsilon}=\left(\begin{array}{ccc}
\mathbf{0}_{n} & \mathbf{1}_{n} & 0 \\
-\mathbf{1}_{n} & \mathbf{0}_{n} & 0 \\
0 & 0 & 0
\end{array}\right)
$$

In this space the Garnier system has a second Hamiltonian structure given by

$$
\tilde{\mathcal{P}}_{1}:=\left[\begin{array}{ccc}
0 & \Lambda-\psi \otimes \psi & 4 \tilde{\mathcal{Y}}_{G}^{\psi} \tag{3.8}\\
-(\Lambda-\psi \otimes \psi)^{\mathrm{T}} & \chi \otimes \psi-\psi \otimes \chi & 4 \tilde{\mathcal{Y}}_{G}^{\chi} \\
-4\left(\tilde{\mathcal{Y}}_{G}^{\psi}\right)^{\mathrm{T}} & -4\left(\tilde{\mathcal{Y}}_{G}^{x}\right)^{\mathrm{T}} & 0
\end{array}\right]
$$

where \otimes denotes the tensor product, $\psi=\left[\psi_{1}, \ldots, \psi_{n}\right]^{\mathrm{T}}, \chi=\left[\chi_{1}, \ldots, \chi_{n}\right]^{\mathrm{T}}, \Lambda=$ $\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$. This structure is an extension of the one constructed in [6] for $f_{k}=$ $0,(k:=1, \ldots, n)$. In view of the applications we specialize the above structure to the case $n=2$, in the five-dimensional extended phase space \mathcal{M}_{2} with coordinates ($\psi_{1}, \psi_{2}, \chi_{1}, \chi_{2} ; d$). The following proposition hoids:

Proposition 3.1. The Garnier vector field $\tilde{\mathcal{Y}}_{1}=\tilde{\mathcal{Y}}_{G}$ belongs to the following bi-Hamiltonian hierarchy:

$$
\begin{equation*}
\tilde{\mathcal{Y}}_{J+1}=\tilde{\mathcal{P}}_{1} \mathrm{~d} \tilde{\mathcal{G}}_{j}=\tilde{\mathcal{P}}_{0} \mathrm{~d} \tilde{\mathcal{G}}_{j+1} \quad(j=0,1) \tag{3.9}
\end{equation*}
$$

where the Hamiltonians $\tilde{\mathcal{G}}_{j}$ are given by

$$
\begin{align*}
& \tilde{\mathcal{G}}_{0}=\frac{d}{4} \quad \tilde{\mathcal{G}}_{1}=-\left(\lambda_{1}+\lambda_{2}\right) \frac{d}{4}+\frac{1}{2}\left(\tilde{I}_{1}+\tilde{I}_{2}\right) \\
& \tilde{\mathcal{G}}_{2}=\lambda_{1} \lambda_{2} \frac{d}{4}-\frac{1}{2}\left(\lambda_{1}+\lambda_{2}\right)\left(\tilde{I}_{1}+\tilde{I}_{2}\right)+\frac{1}{2}\left(\lambda_{1} \tilde{I}_{1}+\lambda_{2} \tilde{I}_{2}\right) \tag{3.10}
\end{align*}
$$

$\tilde{\mathcal{G}}_{0}$ and $\tilde{\mathcal{G}}_{2}$ being Casimirs of $\tilde{\mathcal{P}}_{0}$ and $\tilde{\mathcal{P}}_{1}$, respectively, with $\tilde{I}_{1}, \tilde{I}_{2}$ being the extensions to \mathcal{M}_{2} of the integrals of motion (3.7).

As in the case of the Henon-Heiles system, a bi-Hamiltonian structure for the Garnier system seems to naturally exist only in its extended phase space. Nevertheless, in subsection 5.3 a realization of the integrability structure introduced in proposition 5.1 will be constructed in the original four-dimensional phase space.

4. A map between stationary and restricted flows

Now we shall construct a map between the nth stationary flow and the previous restricted flow of the KdV hierarchy. To this end we extend the corresponding phase spaces, regarding some free parameters in the Hamiltonian functions as additional dynamical variables.

4.1. The general case

As for the P_{1}-formulation of the stationary flow (2.34) we extend its phase space to a ($3 n+1$)-dimensional space, \tilde{M}_{n}, with coordinates ($q_{k}, p_{k} ; a_{0}, \ldots, a_{n-1}, a_{2 n}$); analogously we consider the P_{0}-formulation of the first restricted flow (3.4) in the extended space $\tilde{\mathcal{M}}_{n}$ with coordinates ($\psi_{k}, \chi_{k} ; f_{1}, \ldots, f_{n}, d$).

Let us consider the solutions q_{k} of the dynamical equations (2.34); then $v^{(n)}(\lambda)$ given by

$$
\begin{equation*}
v^{(n)}(\lambda)=\lambda\left(q^{2}(\lambda)\right)^{(n-1)}-q_{n}^{2} \tag{4.1}
\end{equation*}
$$

with $q(\lambda)=1+\sum_{j=1}^{n} q_{j} \lambda^{-j}$, satisfies (2.17), and consequently satisfies the following equation:

$$
\begin{equation*}
B^{\lambda}\left(v^{(n)}(\lambda), v^{(n)}(\lambda)\right)=\lambda^{2 n} a(\lambda) \tag{4.2}
\end{equation*}
$$

where, as above, we put $u=v_{1} / 2+a_{0} / 4$. So, for each n-tuple of distinct complex parameters λ_{j}, any solution $v^{(n)}(\lambda)$ of (4.2) fulfills the system

$$
\begin{equation*}
B^{\lambda_{k}}\left(v^{(n)}\left(\lambda_{k}\right), v^{(n)}\left(\lambda_{k}\right)\right)=\lambda_{k}^{2 n} a\left(\lambda_{k}\right) \quad(k=1, \ldots, n) \tag{4.3}
\end{equation*}
$$

where $v^{(n)}\left(\lambda_{k}\right):=v^{(n)}(\lambda)_{\mid \lambda=\lambda_{k}}$. In order to have a solution also satisfying the second equation (3.2), the Lagrange interpolation formula can be used [21,22]. It allows us to represent the polynomial $v^{(n)}(\lambda)$ by

$$
\begin{equation*}
v^{(n)}(\lambda)=p(\lambda)+\sum_{j=1}^{n} \frac{p(\lambda)}{\lambda-\lambda_{j}} \beta_{j} \tag{4.4}
\end{equation*}
$$

where $p(\lambda)=\prod_{j=1}^{n}\left(\lambda-\lambda_{j}\right)$, and

$$
\begin{equation*}
\beta_{k}=\frac{v^{(n)}\left(\lambda_{k}\right)}{p^{\prime}\left(\lambda_{k}\right)} \quad(k=1, \ldots, n) \tag{4.5}
\end{equation*}
$$

($p^{\prime}(\lambda)$ means the derivative of $p(\lambda)$ with respect to λ).
Obviously the n functions $\beta_{k}(4.5)$ are solutions of the following system:
$2 \beta_{k x x} \beta_{k}-\beta_{k x}^{2}+2 \beta_{k}^{2}\left(\sum_{j=1}^{n} \beta_{j}+\frac{a_{0}}{2}-\sum_{j=1}^{n} \lambda_{j}\right)-\lambda_{k} \beta_{k}^{2}=\frac{\lambda_{k}^{2 n} a\left(\lambda_{k}\right)}{\left(p^{\prime}\left(\lambda_{k}\right)\right)^{2}} \quad(k=1, \ldots, n)$.

Furthermore, β_{k} satisfy the so-called Bargmann constraint

$$
\begin{equation*}
\sum_{j=1}^{n}\left(\beta_{j}-\lambda_{j}\right)=v_{1} \tag{4.7}
\end{equation*}
$$

as one can verify by means of (4.4). Comparing (4.6) with (3.3), we can state the following:
Proposition 4.1. Let $\Psi: \tilde{M}_{n} \rightarrow \tilde{\mathcal{M}}_{n},\left(q, p ; a_{0}, \ldots, a_{n-1}, a_{2 n}\right) \mapsto\left(\psi, \chi ; f_{1}, \ldots, f_{n}, d\right)$ be the map:

$$
\begin{align*}
& \psi_{k}=\left(\frac{\sum_{j=0}^{n-1} \sum_{l=0}^{j} q_{l} q_{j-l} \lambda_{k}^{n-j}-q_{n}^{2}}{p^{\prime}\left(\lambda_{k}\right)}\right)^{1 / 2} \\
& \chi_{k}=\frac{\sum_{j=1}^{n-1} \sum_{l=1}^{j} q_{j-l} p_{n-l} \lambda_{k}^{n-j}-q_{n} p_{n}}{\left(p^{\prime}\left(\lambda_{k}\right)\left(\sum_{j=0}^{n-l} \sum_{l=0}^{j} q_{l} q_{j-1} \lambda_{k}^{n-j}-q_{n}^{2}\right)\right)^{1 / 2}} \\
& f_{k}=\frac{1}{\left(p^{\prime}\left(\lambda_{k}\right)\right)^{2}}\left(a_{2 n}-8 \sum_{j=0}^{n} H_{n-j} \lambda_{k}^{j}+\sum_{j=n+1}^{2 n+1} a_{2 n-j} \lambda_{k}^{j}\right) \tag{4.8}\\
& d=\frac{a_{0}}{2}-\sum_{j=1}^{n} \lambda_{j} \\
& \quad(k=1, \ldots, n)
\end{align*}
$$

where H_{j} are the Hamiltonian functions (2.35). If (q_{k}, p_{k}) are solutions of the stationary flows (2.34), then (ψ_{k}, χ_{k}) are solutions of the Garnier system (3.4) for f_{k} and d given by (4.8).

Remark 4.1. The function B^{λ} is also a generating function of integrals of motion for the Garnier system. Indeed evaluating the function B^{λ} by means of (4.4) and eliminating the first x-derivatives of χ_{k} by means of the Hamilton equations (3.4), one gets

$$
\begin{equation*}
4 \sum_{j=1}^{n} \frac{I_{j}}{\lambda-\lambda_{j}}+\sum_{j=1}^{n} \frac{f_{j}}{\left(\lambda-\lambda_{j}\right)^{2}}+2 d-\lambda=\frac{\lambda^{2 n} \hat{a}(\lambda)}{(p(\lambda))^{2}} \tag{4.9}
\end{equation*}
$$

where I_{j} are the functions (3.7). Taking in this equation the residues at $\lambda=\lambda_{j}$ it follows that the functions I_{j} are integrals of motion along the flow (3.4).

4.2. The map between the Hénon-Heiles and the Garnier system

Now we specialize the map of proposition 4.1 to the Hénon-Heiles and the Garnier systems with two degrees of freedom: we obtain the surprising result that the Hénon-Heiles vector field is mapped onto the Garnier vector field. Let us consider the seven-dimensional phase space of the Hénon-Heiles system \tilde{M}_{2} with coordinates ($a, p ; a_{0},{ }_{3}, a_{4}$). Similarly, for the Garnier systems let us select the parameters f_{1}, f_{2}, d and enidatge the phase space to a seven-dimensional phase space $\tilde{\mathcal{M}}_{2}$, with coordinates $\left(\psi, \chi ; f_{1}, \tilde{f}_{2}, d\right)$. It is easy to prove the following:

Proposition 4.2. Let $\Psi: \tilde{M}_{2} \rightarrow \tilde{\mathcal{M}}_{2},\left(q, p ; a_{0}, a_{1}, a_{4}\right) \mapsto\left(\psi, \chi ; f_{1}, f_{2}, d\right)$ be defined by

$$
\begin{array}{ll}
\psi_{1}=\lambda_{12}^{-1 / 2}\left(\lambda_{1}^{2}+2 \lambda_{1} q_{1}-q_{2}^{2}\right)^{1 / 2} & \psi_{2}=\lambda_{12}^{-1 / 2}\left(-\lambda_{2}^{2}-2 \lambda_{2} q_{1}+q_{2}^{2}\right)^{1 / 2} \\
\chi_{1}=\frac{\left(\lambda_{1} p_{1}-q_{2} p_{2}\right)}{\left(\lambda_{12}\left(\lambda_{1}^{2}+2 \lambda_{1} q_{1}-q_{2}^{2}\right)\right)^{1 / 2}} & \chi_{2}=\frac{\left(\lambda_{2} p_{1}-q_{2} p_{2}\right)}{\left(\lambda_{12}\left(-\lambda_{2}^{2}-2 \lambda_{2} q_{1}+q_{2}^{2}\right)\right)^{1 / 2}} \tag{4.10}\\
f_{1}=\lambda_{12}^{-2}\left(-\lambda_{1}^{5}+a_{0} \lambda_{1}^{4}+a_{1} \lambda_{1}^{3}-8 H_{0} \lambda_{1}^{2}-8 H_{1} \lambda_{1}+a_{4}\right) \\
f_{2}=\lambda_{12}^{-2}\left(-\lambda_{2}^{5}+a_{0} \lambda_{2}^{4}+a_{1} \lambda_{2}^{3}-8 H_{0} \lambda_{2}^{2}-8 H_{1} \lambda_{2}+a_{4}\right) \quad d=\frac{a_{0}}{2}-\left(\lambda_{1}+\lambda_{2}\right)
\end{array}
$$

where $\lambda_{12}=\lambda_{1}-\lambda_{2}$. The tangent map Ψ_{*} maps the extended Hénon-Heiles vector fields $\tilde{X}_{1}, \tilde{X}_{2}$ (2.47) onto the extended Garnier vector fields $\tilde{\mathcal{Y}}_{1}, \tilde{\mathcal{Y}}_{2}$ (3.10):

$$
\begin{equation*}
\Psi_{*}\left(\tilde{X}_{1}\right)=\tilde{\mathcal{Y}}_{1} \quad \Psi_{*}\left(\tilde{X}_{2}\right)=\tilde{\mathcal{Y}}_{2} \tag{4.11}
\end{equation*}
$$

Moreover the pull-back of the Garnier integrals of motion \mathcal{G}_{1} and \mathcal{G}_{2} are integrals of motion for the Hénon-Heiles system

$$
\begin{align*}
& \Psi^{*}\left(\mathcal{G}_{1}\right)=-\frac{1}{8}\left(\lambda_{1}^{2}+\lambda_{2}^{2}\right)+\frac{a_{0}}{8}\left(\lambda_{1}+\lambda_{2}\right)+\frac{a_{1}}{8} \\
& \Psi^{*}\left(\mathcal{G}_{2}\right)=\lambda_{12}^{-2}\left(2 \lambda_{1} \lambda_{2} H_{0}+\left(\lambda_{1}+\lambda_{2}\right) H_{1}+2 H_{2}\right) \tag{4.12}\\
& \\
& \quad+\frac{\lambda_{12}^{-2} \lambda_{1} \lambda_{2}}{4}\left(\left(\lambda_{1}^{3}+\lambda_{2}^{3}\right)-\frac{a_{0}}{2}\left(\lambda_{1}^{2}+\lambda_{2}^{2}\right)-\frac{a_{1}}{2}\left(\lambda_{1}+\lambda_{2}\right)\right)
\end{align*}
$$

The action of the map Ψ on the Poisson tensor \tilde{E} of the Hénon-Heiles system, furnishes a new Poisson tensor for the Garnier system compatible with $\tilde{\mathcal{E}}$. Moreover the action of Ψ on the Poisson tensor \tilde{P}_{0} is given by

$$
\Psi^{*} \tilde{P}_{0} \Psi_{*}=\lambda_{12}^{-2}\left[\begin{array}{ccc}
0 & \mathcal{A} & 0 \tag{4.13}\\
-\mathcal{A}^{T} & \mathcal{B} & 0 \\
0 & 0 & 0
\end{array}\right]
$$

where

$$
\begin{align*}
\mathcal{A} & =\frac{1}{\psi_{1}^{2} \psi_{2}^{2}}\left[\begin{array}{cc}
\psi_{2}^{2}\left(\psi_{1}^{2}+\psi_{2}^{2}+\lambda_{1}-\lambda_{2}\right) & -\psi_{1} \psi_{2}\left(\psi_{1}^{2}+\psi_{2}^{2}\right) \\
-\psi_{1} \psi_{2}\left(\psi_{1}^{2}+\psi_{2}^{2}\right) & \psi_{1}^{2}\left(\psi_{1}^{2}+\psi_{2}^{2}+\lambda_{2}-\lambda_{1}\right)
\end{array}\right] \\
\mathcal{B} & =\frac{\psi_{1}^{2}+\psi_{2}^{2}}{\psi_{1}^{2} \psi_{2}^{2}}\left[\begin{array}{cc}
0 & \left(\chi_{2} \psi_{1}-\chi_{1} \psi_{2}\right) \\
-\left(\chi_{2} \psi_{1}-\chi_{1} \psi_{2}\right) & 0
\end{array}\right] . \tag{4.14}
\end{align*}
$$

So the map Ψ is not a Poisson morphism. However, according to (4.11), the orbits of the Hénon-Heiles system are mapped onto the orbits of the Garnier system.

5. A new integrability structure

5.1. The reduced structures of the Hénon-Heiles and the Garnier systems

In order to have a bi-Hamiltonian hierarchy also in the original phase space for the HénonHeiles and the Garnier systems, one can try to apply the reduction techniques known from the literature $[10,24]$. In particular, two methods can be followed: a restriction to the standard phase space or a projection onto it. However, in both cases, these attempts fail.

As for the Henon-Heiles system, if the restriction submanifold is chosen to be a leaf $S_{a_{4}}^{(1)}$ of the second natural foliation in M_{2}, the Hamiltonians \tilde{H}_{j}, the vector fields \tilde{X}_{j} and the Poisson structure \tilde{P}_{1} can be trivially restricted respectively to H_{j}, X_{j} and E; but it turns out that \tilde{P}_{0} cannot be restricted. So two integrable Hamiltonian vector fields are obtained in $S_{a 4}^{(1)}$ but not a bi-Hamiltonian hierarchy.

If $\Pi: M_{2} \rightarrow S_{2},\left(q_{1}, q_{2}, p_{1}, p_{2} ; a_{2 n}\right) \mapsto\left(q_{1}, q_{2}, p_{1}, p_{2}\right)$ is the projection map, the Hamiltonians \tilde{H}_{j} and the vector fields \tilde{X}_{j} cannot be projected onto S_{2}, because they depend on the fibre coordinate. Instead, the Poisson tensors \tilde{P}_{0} and \tilde{P}_{1} are projected onto

$$
P_{H}:=\Pi_{*} \tilde{P}_{0} \Pi^{*}=\left[\begin{array}{cc}
0 & A \tag{5.1}\\
-A^{\mathrm{T}} & B
\end{array}\right] \quad \Pi_{*} \tilde{P}_{1} \Pi^{*}=E
$$

with A, B as in proposition 2.2 . Because these operators are compatible and invertible, one obtains the following Nijenhuis tensor [25]:

$$
N_{H}:=P_{H} E^{-1}=\left[\begin{array}{cc}
A & 0 \tag{5.2}\\
B & A^{T}
\end{array}\right]
$$

and consequently the hierarchy of Poisson tensors $P_{k}:=N_{H}^{k} P_{H}, k \in \mathbb{Z}$. However, these tensors are not invariant along the flow of the Hénon-Heiles vector field X_{1}, equation (2.41). In other words X_{1} is neither a symmetry of P_{0} nor of P_{1}, so that these tensors cannot generate a bi-Hamiltonian hierarchy starting from X_{1}.

As in the case of the Henon-Heiles system, one cannot reduce the bi-Hamiltonian structure of the Garnier system with n degrees of freedom onto the restricted phase space. If $\Pi: \mathcal{M}_{n} \rightarrow \mathcal{S}_{n}^{(1)},\left(\psi_{k}, \chi_{k} ; d\right) \mapsto\left(\psi_{k}, \chi_{k}\right)$ is the projection map, the Poisson tensor $\tilde{\mathcal{P}}_{0}$ and $\tilde{\mathcal{P}}_{1}$ are projected onto two compatible tensors

$$
\Pi_{*} \tilde{P}_{0} \Pi^{*}=\mathcal{E} \quad \mathcal{P}_{G}:=\Pi_{*} \tilde{\mathcal{P}}_{1} \Pi^{*}=\left[\begin{array}{cc}
0 & \Lambda-\psi \otimes \psi \tag{5.3}\\
-(\Lambda-\psi \otimes \psi)^{\top} & \chi \otimes \psi-\psi \otimes \chi
\end{array}\right] .
$$

They give rise to the Nijenhuis tensor $\mathcal{N}_{G}:=\mathcal{P}_{G} \mathcal{E}^{-1}$ together with the hierarchy of Poisson tensor fields $\mathcal{P}_{k}:=\mathcal{N}_{\sigma}^{k} \mathcal{E}, k \in \mathbb{Z}$. However, these tensor fields are not invariant along the flow of the Garnier vector field \mathcal{Y}_{G} (3.6), so they do not generate a bi-Hamiltonian hierarchy starting from \mathcal{Y}_{G}.

5.2. A new integrability criterion

In the previous subsection we have put into evidence some problems arising in the geometrical reduction of a bi-Hamiltonian structure from an extended phase space onto the original one. As an alternative construction, here we introduce a new integrability scheme, weaker than the bi-Hamiltonian one, but living in the standard phase space. We shall define this new structure for a generic Hamiltonian system with n degrees of freedom; for $n=2$ it coincides with the one introduced in [8] for the Hénon-Heiles system with the Hamiltonian (2.37) and $a_{4}=0$. As new examples of this integrability structure, the
case of the Garnier system with two degrees of freedom will be discussed here whereas multidimensional extensions of the Hénon-Heiles system will be presented elsewhere.

Proposition 5.1. Let M be a $2 n$-dimensional Poisson manifold equipped with a Poisson tensor Q_{0}, and Z_{0} a Hamiltonian vector field with Hamiltonian $h_{0}: Z_{0}=Q_{0} \mathrm{~d} h_{0}$. Let there exist a tensor $\mathcal{N}: T M \rightarrow T M$ and a skew-symmetric tensor $Q_{1}: T^{*} M \rightarrow T M$ such that

$$
\begin{equation*}
Q_{1}=\mathcal{N} Q_{0} \tag{5.4}
\end{equation*}
$$

Denote by Z_{i} and α_{i} the vector fields and the 1 -forms obtained, respectively, by the iterated action of the tensor \mathcal{N} on Z_{0} and its adjoint $\mathcal{N}^{*}: T^{*} M \rightarrow T^{*} M$ on $\alpha_{0}:=\mathrm{d} h_{0}$

$$
\begin{equation*}
Z_{i}:=\mathcal{N}^{i} Z_{0} \quad \alpha_{i}:=\mathcal{N}^{*^{\prime}} \alpha_{0} \quad(i=1, \ldots, n-1) \tag{5.5}
\end{equation*}
$$

Let there exist $n-1$ independent functions $h_{i}(i=1, \ldots, n-1)$ and $\left(n^{2}+n-2\right) / 2$ functions $\mu_{i j}(i=1, \ldots, n-1 ; 0 \leqslant j \leqslant i)$ with $\mu_{00}=1, \mu_{i i} \neq 0(i=1, \ldots, n-1)$, such that the 1 -forms α_{i} can be written as

$$
\begin{equation*}
\alpha_{\mathrm{t}}=\sum_{j=0}^{t} \mu_{i j} \mathrm{~d} h_{j} \quad(i=1, \ldots, n-1) . \tag{5.6}
\end{equation*}
$$

Under the previous assumptions the following results hold:
(i) the vector fields Z_{i} satisfy the recursion relations

$$
\begin{equation*}
Z_{i+1}=Q_{0} \alpha_{i+1}=Q_{1} \alpha_{i} \quad(i=0, \ldots, n-2) \tag{5.7}
\end{equation*}
$$

(ii) the functions h_{i} are in involution with respect to the Poisson bracket defined by Q_{0} and they are constants of motion for the fields Z_{k}

$$
\begin{equation*}
\left\{h_{i}, h_{j}\right\}_{\ell_{0}}=0 \quad \mathcal{L}_{Z_{k}}\left(h_{i}\right)=0 \tag{5.8}
\end{equation*}
$$

where $\mathcal{L}_{Z_{k}}$ denotes the Lie derivative with respect to the vector field Z_{k}.
(iii) the Hamiltonian system corresponding to the vector field Z_{0} is Liouville-integrable. In addition if Q_{1} is a Poisson tensor field, then also Z_{1} is an integrable Hamiltonian vector field and the functions h_{i} are in involution also with respect to the Poisson bracket defined by Q_{1}.

Proof. (i) From (5.4) and the skew-symmetry of Q_{0} and Q_{1} it follows that $Q_{0} \mathcal{N}^{*}=\mathcal{N} Q_{0}$ and $Q_{1} \mathcal{N}^{*}=\mathcal{N} Q_{1}$. Then

$$
\begin{equation*}
Z_{1}-Q_{0} \alpha_{1}=Z_{1}-Q_{0} \mathcal{N}^{*} \alpha_{0}=Z_{1}-\mathcal{N} Q_{0} \alpha_{0}=0 \tag{5.9}
\end{equation*}
$$

and the first relation (5.7) is proved by induction since it is

$$
\begin{equation*}
Z_{i+1}-Q_{0} \alpha_{i+1}=\mathcal{N} Z_{i}-Q_{0} \mathcal{N}^{*} \alpha_{i}=\mathcal{N}\left(Z_{i}-Q_{0} \alpha_{i}\right) \tag{5.10}
\end{equation*}
$$

The second relation (5.7) follows from

$$
\begin{equation*}
Z_{i+1}-Q_{1} \alpha_{i}=\mathcal{N} Z_{i}-Q_{1} \alpha_{i}=\mathcal{N}\left(Z_{i}-Q_{0} \alpha_{i}\right) \tag{5.11}
\end{equation*}
$$

(ii) By (5.6), the gradients $\mathrm{d} h_{k}$ can be expressed for any k in terms of $\mathrm{d} h_{0}$

$$
\begin{equation*}
\mathrm{d} h_{k}=\left(\sum_{i=0}^{k} v_{k i} \mathcal{N}^{*^{i}}\right) \mathrm{d} h_{0} \tag{5.12}
\end{equation*}
$$

where $\nu_{k i}$ are the elements of the matrix a^{-1}, a being the lower-triangular matrix defined by $a_{i j}=\mu_{i j}(i \geqslant j), a_{i j}=0(i<j),(i, j=0, \ldots, n-1)$. Thus

$$
\begin{align*}
\left\{h_{i}, h_{j}\right\}_{Q_{0}}: & =\left\langle\mathrm{d} h_{i}, Q_{0} \mathrm{~d} h_{j}\right\rangle \\
& =\sum_{a=0}^{i} \sum_{b=0}^{j} \nu_{i a} \nu_{j b}\left\langle\mathcal{N}^{*^{a}} \mathrm{~d} h_{0}, Q_{0} \mathcal{N}^{*^{b}} \mathrm{~d} h_{0}\right\rangle \\
& =\sum_{a=0}^{i} \sum_{b=0}^{j} \nu_{i a} \nu_{j b}\left\langle\mathrm{~d} h_{0}, \mathcal{N}^{a+b} Q_{0} \mathrm{~d} h_{0}\right\rangle \tag{5,13}
\end{align*}
$$

and the first relation (5.8) follows from the skew-symmetry of the tensor $\mathcal{N}^{m} Q_{0}$ for any m. Furthermore

$$
\begin{align*}
\mathcal{L}_{Z_{k}}\left(h_{i}\right) & =\left\langle\mathrm{d} h_{i}, Q_{0} \alpha_{k-1}\right\rangle \\
& =\left\langle\mathrm{d} h_{i}, Q_{0} \sum_{j=0}^{\ell} \mu_{k_{j}} \mathrm{~d} h_{j}\right\rangle \\
& =\sum_{j=0}^{k} \mu_{k j}\left\{h_{i}, h_{j}\right\}_{Q_{0}} \\
& =0 \tag{5.14}
\end{align*}
$$

(iii) Since Z_{0} is a Hamiltonian vector field, it is Liouville-integrable on account of the previous result. Moreover, since it is

$$
\begin{align*}
\left\{h_{i}, h_{j}\right\}_{Q_{1}}: & =\left\langle\mathrm{d} h_{i}, Q_{1} \mathrm{~d} h_{j}\right\rangle \\
& =\sum_{a=0}^{i} \sum_{b=0}^{j} v_{i a} v_{j b}\left\langle\mathcal{N}^{*^{a}} \mathrm{~d} h_{0}, Q_{1} \mathcal{N}^{*^{b}} \mathrm{~d} h_{0}\right\rangle \\
& =\sum_{a=0}^{i} \sum_{b=0}^{j} v_{i a} v_{j b}\left\langle\mathrm{~d} h_{0}, \mathcal{N}^{a+b} Q_{1} \mathrm{~d} h_{0}\right\rangle \\
& =0 \tag{5.15}
\end{align*}
$$

it follows that if Q_{1} is also a Poisson tensor, $\{,\}_{Q_{1}}$ is a Poisson bracket, Z_{1} is a Hamiltonian vector field and then it is Liouville-integrable.

Remark 5.1. The recursion scheme and the integrability of the vector field Z_{0} do not require that the skew-symmetric tensor Q_{1} be a Poisson tensor; so M is a Poisson manifold, not a bi-Hamiltonian one.

In view of the applications of the next subsection, it may be worthwhile to remark that the results of proposition 5.1 hold true if the role of Q_{0} and Q_{1} are interchanged; to be more precise, one can prove (just as for proposition 5.1):

Proposition 5.2. The integrability scheme of proposition 5.1 is still valid if Q_{0} is skewsymmetric, Q_{1} is a Poisson tensor and the role of Z_{0} is now played by $Z_{1}=Q_{1} \mathrm{~d} h_{0}$. The involution relations (5.8) become $\left\{h_{i}, h_{j}\right\}_{Q_{1}}=0$.

5.3. The integrability structure of the Hénon-Heiles and the Garnier systems

In subsection 5.1 we recovered by projection onto the quotient manifold S_{2} the Nijenhuis tensor (5.2) and a hierarchy of compatible Poisson tensors; however, it is not possible to associate to these tensors and to the Hénon-Heiles vector field X_{1} (2.41) a bi-Hamiltonian hierarchy of vector fields. Nevertheless it is possible to use these elements to construct an example of the integrability structure introduced in proposition 5.2. For this purpose, let us make the following choices:
(i) $Q_{1}=E$, the vector field $Z_{1}:=X_{1}(2.41)$ with Hamiltonian $h_{0}:=H_{0}$ (2.36);
(ii) the tensor field $\mathcal{N}:=N_{H}$ (5.2) and $Q_{0}:=P_{-2}=N_{H}^{-2} P_{H}$, with P_{H} as in (5.1);
(iii) the function $h_{1}:=H_{1}(2.40)$ and the functions $\mu_{i j}$ as $\mu_{10}=0, \mu_{11}=1 / q_{2}^{2}$;
then it is immediate to check that the conditions of proposition 5.2 are satisfied. Moreover the vector field $Z_{0}:=Q_{0} \mathrm{~d} h_{0}=P_{-2} \mathrm{~d} H_{0}$ is a new integrable vector field:

$$
Z_{0}=\left[\begin{array}{c}
-2 p_{1} q_{1}-p_{2} q_{2} \tag{5.16}\\
-p_{1} q_{2} \\
-p_{2}^{2}+6 q_{1}^{3}+2 q_{1} q_{2}-\frac{\alpha_{4}}{4 q_{2}^{2}}-\frac{\alpha_{1}}{2} q_{1}-2 a_{0} q_{1}^{2}+\frac{q_{0}}{4} q_{2}^{2} \\
p_{1} p_{2}+\frac{q_{2}^{3}}{2}+3 q_{1}^{2} q_{2}-\frac{q_{1}}{4} q_{2}+a_{0} q_{1} q_{2}
\end{array}\right]
$$

This integrability structure is related, through the map (2.38), to the one introduced in [8] for the Hamiltonian (2.37) with $a_{4}=0$.

For the Garnier system with two degrees of freedom one can construct an example of the integrability structures of proposition 5.1. Indeed if one uses the elements of subsection 5.1 and makes the following choices:
(i) $Q_{0}:=\mathcal{E}, h_{0}:=\tilde{\mathcal{G}}_{1}(3.11), Z_{0}:=\mathcal{Y}_{G}$ (3.6);
(ii) $\mathcal{N}:=\mathcal{N}_{G}^{-1}=\mathcal{E} \mathcal{P}_{G}^{-1}$, with \mathcal{P}_{G} as in (5.3), $\mathcal{Q}_{1}:=\mathcal{P}_{-1}=\mathcal{N}_{G}^{-1} \mathcal{E}$;
(iii) the functions $h_{1}:=\tilde{\mathcal{G}}_{2}(3.11), \mu_{10}=0, \mu_{11}=-\frac{\lambda_{1}^{2} \lambda_{2}^{2}}{\lambda_{2} \psi_{1}^{2}+\lambda_{1} \psi_{2}^{2}-\lambda_{1} \lambda_{2}}$;
then the conditions of proposition 5.1 are satisfied. Moreover the vector field $Z_{1}:=\mu_{11} \mathcal{Y}_{2}$ is a new integrable vector field (\mathcal{Y}_{2} is the restriction to the submanifold of $\mathcal{M}_{2}, d=\cos$, of the vector field $\tilde{Y}_{2}(3.10)$).

At last, we compute how the map between the standard phase spaces of the HénonHeiles and of the Garnier systems, induced by the map (4.10), acts on the recursion operators of the previous integrability structures.

Proposition 5.3. Let us consider the map $\Psi:\left(q_{1}, q_{2}, p_{1}, p_{2}\right) \mapsto\left(\psi_{1}, \psi_{2}, \chi_{1}, \chi_{2}\right)$

$$
\begin{array}{ll}
\psi_{1}=\lambda_{12}^{-1 / 2}\left(\lambda_{1}^{2}+2 \lambda_{1} q_{1}-q_{2}^{2}\right)^{1 / 2} & \psi_{2}=\left(\lambda_{12}\right)^{-1 / 2}\left(-\lambda_{2}^{2}-2 \lambda_{2} q_{1}+q_{2}^{2}\right)^{1 / 2} \\
\chi_{1}=\frac{\left(\lambda_{1} p_{1}-q_{2} p_{2}\right)}{\left(\lambda_{12}\left(\lambda_{1}^{2}+2 \lambda_{1} q_{1}-q_{2}^{2}\right)\right)^{1 / 2}} & \chi_{2}=\frac{\left(\lambda_{2} p_{1}-q_{2} p_{2}\right)}{\left(\lambda_{12}\left(-\lambda_{2}^{2}-2 \lambda_{2} q_{1}+q_{2}^{2}\right)\right)^{1 / 2}} \tag{5.17}
\end{array}
$$

The map Ψ relates the recursion operators of the Hénon-Heiles and of the Garnier systems: $\Psi_{*} N_{H}=\mathcal{N}_{G}^{-1} \Psi_{*}$.

6. Concluding remarks

In this paper we have derived a bi-Hamiltonian formulation for stationary flows, and for the first restricted flows of the KdV hierarchy. Our approach amounts to respectively searching the kernel of the Poisson pencil and n-Poisson structures extracted from the Poisson pencil of the KdV hierarchy. In this approach the generating function of the GD polynomials plays a relevant role. Moreover it allows us to construct a map between stationary flows and restricted flows; in the case of the fifth-order stationary KdV equation, this map relates solutions of the Hénon-Heiles system to solutions of the Garnier system. However, to obtain these results one must extend the phase space of the reduced flows by means of some free parameters naturally contained in the corresponding Hamiltonian functions. This difficulty can be overcome, at least if one analyses the complete integrability of a Hamiltonian system without requiring an explicit knowledge of a bi-Hamiltonian structure. For this purpose, we have introduced a new integrability scheme in the standard phase space, which implies Liouville integrability of the reduced Hamiltonian systems. For brevity we have applied this scheme only to the Henon-Heiles and the Garnier systems with two degrees of freedom. Other examples such as Henon-Heiles type systems with three and four degrees of freedom, constructed by means of the reduction method of section 2 , will be discussed elsewhere.

Acknowledgments

I wish to thank F Magri, who pointed out the role of the GD polynomials in the biHamiltonian formulation of the KdV hierarchy and C Morosi for many valuable discussions and suggestions.

References

[1] Dickey L A 1991 Soliton Equations and Hamiltonian Systems (Singapore: World Scientific)
[2] Antonowicz M and Rauch-Wojciechowski S 1992 How to construct finite dimensional bi-Hamiltonian systems from soliton equations: Jacobi integrable potentials J. Math. Phys. 33 2115-25
[3] Fordy A P 1991 The Hénon-Heiles system revisited Physica 52D 204-10
[4] Antonowicz M and Rauch-Wojciechowski S 1992 Bi-Hamiltonian Formulation of the Henon-Heiles System and its Multidimensional Extensions Phys. Lett. 163A 167-72
[5] Cao C W 1990 Non linearization of eigenvalue problem Non Linear Physics ed C Gu et al (Berlin: Springer) pp 66-78
[6] Antonowicz M and Rauch-Wojciechowski S 1990 Constrained flows of integrable pDes and bi-Hamiltonian structure of the Garnier system Phys. Lett. 147A 455-62
[7] Tondo G 1994 A connection between the Hénon-Heiles system and the Gamier system Theor, Math. Phys. 33 796-802 (1994 Teor. Mat. Fiz. 99 552-9)
[8] Caboz R, Ravoson V and Gavrilov L 1991 Bi-Hamiltonian structure of an integrable Hénon-Heiles system J. Phys. A: Math. Gen. 24 L523-5
[9] Arnold V 11989 Mathematical Methods in Classical Mechanics (Berlin: Springer)
[10] Libermann P and Marle C M 1987 Symplectic Geometry and Analytical Mechanics (Dordrecht: Reidel)
[11] Magri F 1978 A simple model of the integrable Hamiltonian equation J. Math. Phys. 19 1156-62
[12] Casati P, Magri F and Pedroni M 1992 Bihamiltonian Manifolds and τ-function Contemporary Mathematics vol 132, ed M J Gotay ef al (Providence, RI: American Mathematical Society) pp 213-34
[13] Lax P 1975 Periodic Solutions of the KdV Equation Commun. Pure Appl. Math. 28 141-88
[14] Novikov S P 1981 Integrable Systems (Lecture Note Series 60) (Cambridge: Cambridge University Press) pp 1-12
[15] Bogoyavlenskii O I and Novikov S P 1976 The relationship between Hamiltonian formalism of stationary and non stationary problems Funct. Anal. Appl. 176 8-11
[16] Rauch-Wojciechowski S 1992 Newton representation for stationary flows of the KdV hierarchy, Phys. Lett. A 170 91-94
[17] Antonowicz M, Fordy A P and Wojciechowski S 1987 Integrable stationary fows, Miura maps and BiHamiltonian Structures Phys. Lett. 124A 143-50
[18] Blaszak M and Rauch-Wojciechowski S 1994 A Hénon-Heiles system and related integrable Newton equations J. Math. Phys. 35 1693-709
[19] Tabor M 1989 Chaos and Dynamical Systems (New York: Wiley)
[20] Moser J 1980 Various aspects of integrable Hamiltonian systems Dynamical Systems, CIME 1978, (Progress in Mathematics 8) (Basel: Birkhäuser) pp 233-89
[21] Alber S I 1981 On Stationary Problems for Equations of Korteweg-de Vries Type Commun. Pure Appl. Math. 34 259-72
[22] Cao C W 1994 Parametric representation of the finite-band solution of the Heisenberg equation Phys. Lett. 184A 333-8
[23] Wojciechowski S 1985 Integrability of one particle in a perturbed central quartic potential Phys. Scr. 31 433-8
[24] Marsden J E and Ratiu T 1986 Reduction of Poisson manifolds Lett. Math. Phys. 11 161-9
[25] Magri F 1980 A geometrical approach to the non linear solvable equations Lecture Notes in Physics vol 120, ed M Boiti, F Pempinelli and G Soliani (Berlin: Springer) pp 233-63

