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On the integrability of stationary and restricted flows of
the xav hierarchy*
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34127 Trieste, Italy

Received 15 May 1995

Abstract. A bi-Hamiltonian formulation for staticnary flows of the xdv hierarchy is derived in
an extended phase space. A map between stationary flows and restricted ffows is constructed:
in one case it connects an integrable Hénon-Heiles system and the Gamier system. Moreover, 2
new integrability scheme for Hamiltonian systems is proposed that holds in the standard phase
space.

1. Introduction

In recent years there has been an increasing interest for the construction of finite-
dimensional dynamical systems from soliton equations, through the so-called methods of
stationary flows and restricted flows (see [1,2] and references therein). The discovery of
suitable sets of coordinates has allowed one to write the reduced systems as physically
interesting Hamiltonian systems. In the case of the Kdv hierarchy, the g-representation for
stationary flows has given rise to the Hénon—Heiles system [3, 4], the square eigenfunctions
representation for restricted flows has furnished the Neumann and the Garnier systems [3, 6].
However the relation between dynamical systems which are obtained through different
reduction techniques from the same soliton hierarchy is not clear; moreover a systematic
way to find the second Hamiltonian formulation for stationary flows of any order, without
the use of a Miura map, is still lacking.
The aim of this paper is to give a contribution in these directions. In particular:

(i) A bi-Hamiltonian formulation for stationary flows of the Kdv hierarchy in a suitably
extended phase space is derived in a systematic way. As an example, the bi-Hamiltonian
structure of Hénon—Heiles-type systems is explicitly shown.

(i) A map between stationary and restricted flows of the Kdv hierarchy is obtained, based
on the generating function of the Gelfand-Dickey (GD) polynomials. As an application,
a map between an integrable Hénon—Heiles system and the Garnier system with two
degrees of freedom is constructed.

(iii) An integrability criterion is proposed, which can be applied to both stationary and
restricted flows. Though weaker than the bi-Hamiltonian formulation, it does not require
the extension of the phase spaces.

* Work partially supported by the GNFM of the Italian CNR and by the project ‘Metodi Geometrici e probabilistici
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The paper is organized as follows. In section 2 we construct the stationary flows
associated to the the Kdv hierarchy through the kernel of the Poisson pencil. Using
the generating function of GD polynomials as in [7, we give a bi-Lagrangian and a bi-
Hamiltonian formulation of the Lax-Novikov stationary equations of any order; as an
application, we exhibit a generalized Hénon-Heiles system.

In sections 3 and 4 we formulate the method of restricted flows in terms of the
Poisson pencil instead of the spectral problem as in [5,2]. This formulation allows us
to explicitly construct a map between restricted and stationary flows, by means of an
appropriate extension of the corresponding phase spaces. The previous map is specialized
to the Hénon—Heiles and the Garnier systems.

In section 5 we show that the entire bi-Hamiltonian hierarchy of the Hénon-Heiles and
the Garnier systems cannot be reduced from the extended to the standard phase space. For
this reason, we propose an integrability criterion holding for a generic finite-dimensional
Hamiltonian system. It generalizes the criterion introduced in 8] for the particular case
of the Hénon—Heiles system. Though weaker than the bi-Hamiltonian scheme, it assures
Liouville-integrability of a Hamiltonian system [9] in its standard phase space, i.e. without
the introduction of supplementary coordinates. This criterion is applied to the generalized
Hénon-Heiles system and to the Garnier system with two degrees of freedom.

Now we give some preliminaries, mainly to specify notation and terminology. Let M be
a n-dimensional manifold. At any pointu € M, the tangent and cotangent spaces are denoted
by T, M and T} M, the pairing between the two spaces by (,} : )M x T, M — R. For each
smooth function f € C®(M), df denotes the differential of f. M is said to be a Poisson
manifold if it is endowed with a Poisson bracket {,} : C®(M) x C®{M) - C®(M),
possibly a degenerate one; the associated Poisson tensor P is defined by {f, g}(u) =
{df (u}, P,dg(u)}. So, at each point &, P, is a linear map F, : TfM — T, M, skew-
symmetric and with vanishing Schouten bracket [10]. A function # € C*(M) with a non
trivial differential df € Ker P is called a Casimirof P: P, df(#)=0. Amap® . M - M
is a Poisson morphism if {f, g}o® = {f o ¥, g o ®}, for each f, g € C®(M); ® leaves
invariant the Poisson tensor P: Psgyy = $. B, $*, where ®, and P* denote, respectively,
the tangent and the cotangent maps associated to @. In particular, if the Poisson bracket is
non-degencrate, i.e. if P is invertible, and the Poisson morphism is a diffeomorphism,
® defines a symplectic {canonical) transformation. M is said to be a bi-Hamiltonian
manifold if it is endowed with two Poisson tensors Py and P such that the associated
pencil P* 1= Py — APy be itself 2 Poisson tensor for any A € C [11,12].

2. Stationary flows and Hénon—Heiles systems

2.1, Kav hierarchy and Gelfand-Dickey polynomials

Let M be a bi-Hamiltonian manifold: if the associated Poisson pencil P* := Py — APy
admits as a Casimir a formal Laurent series k(i)

R =Y hy A7 2.1
J20

then hg is a Casimir of Py and the coefficients #; (f 2 1) are the Hamiltonian functions of
a hierarchy of bi-Hamiitonian vector fields X;;:

X; = Pidh; = Pydhjy Gz0. (2.2

At any point ¥ € M, the bi-Hamiltonian flows are given by du/dy; = X;(u), ¢; being
the evolution parameter of the jth flow. The vector fields (2.2) are Hamiltonian also with
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respect to the Poisson pencil P*. In fact the recursion relation (2.2) can be written as
X; =P da?3)y  BDQ) = (A0, 2.3

where the index + means the projection of a Laurent series onto the purely polynomial part.
Let M be the algebra of polynomials in &, ux, s, ... (@ = u(x) is a C* function of x
and the subscript x means the derivative with respect to x), and let Py and P, be the two
Poisson tensors of the Kdv hierarchy [11]:
d @

d
Py = E P = a—i -+ 4ua"x" 4+ 2u,. (24)

The gradients of the Casimirs of the associated Poisson pencil P* can be obtained searching
for the 1-forms w(X) := 3 ;. v; A/ which are solutions of the following equation:

B (v(2), v(A) = a(d) (2.5}
where a(A) = Y, a;A™7, a, are constant parameters and B* is the bilinear function
B (w1, w3) 1= Wimy Wy + W1 W — WixWae + (G — Mwywe. (2.6)

In fact B* is related to the Poisson pencil through the relation

d
Ex—B"‘(w;, wy) = wy Prwg + wy Pruy YV w;, ws). (2.7)
Equation (2.5) can be solved developing the left-hand side as & Laurent series
B* (M), pA) = ) Bia~ (2.8)
k21

so that, for each a(A), it furnishes the coefficients of the solution y(A) (unique up o a
sign). The solution corresponding to #(A) = —A is the so-called basis solution T(X); its
first coefficients are

To=1 T =24 Ty = 2(Uxx + 3u%) T3 = 2(u™® + 5u® + 10u,u + 104°)
29

and so on, namely the gradients of the first K¢v Hamiltonians. In what follows we shall
consider also the 1-form v(L) = ¢(A)T(A), which is a solution of (2.5) for

a(h) = —Ac*(R) cMy=1+) e (2.10)
izl
where the coefficients ¢; are free parameters. In this case the first 1-forms of the hierarchy
arevp =1, vy =7 + ¢y, V3 =Vy + ;71 + ¢y, and so on.
The coefficient By in (2.8) can be expressed through the GD polynomials. For each
Laurent series v(A) let us consider the functions B®(A) = B* (v(1), v® (1)), where
v®(a) := (A*u(1)), ; these functions have the form

k~1
BOQ) = M9l Y 2 (g — vovja) + A i {j,k € Ng). (2.11)
Jj=1 izt
It can be shown that 7 )
By =-v] By = por — voug+1 (k€ Ny). (2.12)

Furthermore, if v(A) is a solution of (2.5), the coefficients p; in (2.11) are polynomials in
u and its x-derivatives. They will be referred to as Gelfand-Dickey (GD) polynomials and
the function B as their generating function.
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The fundamental property of the GD polynomials, stemming from (2.11), (2.5),(2.7), (2.3),
is the following relation with the gradients v; = dh; and the bi-Hamiltonian vector fields
X I’

%pﬂ‘ =Xy (2.13)
We report some G polynomials to be used in what follows (v = 1):
poo =4u— v
po = 8uvy — v} — vy 4 201
Pon = duv? + 8uvy — 2vyup — vs ~ vE, + 20y vy, + 2004, (2.14)

Prz = 8uvyvg — v% + duvy — vyv3 — vy + 205209 + 20205 + 20y Vppy F Vg
DPrk = 2Vt — v,fx 4 4uv§ .

The GD polynomials corresponding to the basis solution T(A) are the polynomials defined
in {1, proposition 12.1.12].

2.2, The method of stationary flows

The method of stationary flows [13-15] was developed in order to reduce the flows of the
KdV hierarchy onto the set M, of fixed points of the nth flow X,, of the hierarchy:

M, = {u) Xalut vy, ..., 6@ty =0}, (2.15)

As M, is odd-dimensional it cannot be a symplectic manifold; nevertheless we will show that
it is a bi-Hamiltonian manifold: it will be referred to as extended phase space. Moreover,
M, is naturally foliated, on account of (2.2) and (2.4), by a one-parameter family of 2n-
dimensional submanifolds S, given by

Sy 1= {ut | vnp1 (8, Uz, ..., u®N) = ¢} (2.16)

(c being a constant parameter), which are invariant manifolds with respect to each vector
field of the Kdv hierarchy, due to the invariance of the 1-forms ;. So M, can be
parametrized naturally by vy, ..., vyy) and by their x-derivatives vy, ..., ¥py. We shall
use these coordinates in what follows.

Here we perform two different stationary reductions of the Kdv flows by improving the
procedure introduced in [7]. On one side, we choose as a reduction submanifold S just the
leaf S, of the foliation (2.16) corresponding to ¢ = 0; it is a level set of the GD polynomial
Pon, due to (2.5),(2.8),(2.12). On account of equation (2.13), the GD polynomials p;,,
restricted to M, are also invariant with respect to each flow of the hierarchy; thus we can
choose as a second reduction submanifold S’ a level set of p,,. The one-parameter family
of the level sets of p,, forms a foliation of the manifold M, different from the previous
one. Finally we construct the bi-Hamiltonian structure in the ground manifold M.

From the computational point of view, one proceeds as follows.

(1) Due to (2.3) and (2.5), the manifold M, is defined by the solutions u of the equation
BMu(n), v ) = A"a(d) (2.17)

where v(A) = Y 1 5471, a(d) = ?;_, a;A~4. In particular, if a(A) = —Ac?(A), as in
(2.10), M, is given by

M, = {u | Zn+ Y i %uej =0} (2.18)

j=t
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i.e. by the solutions of the Lax-Novikov equations {13]. Taking into account (2.11) and
choosing a_; = —1, by equating in equation (2.17) the coefficients of A**! we get vj = 1;
from now on we put vy = 1. Moreover, equating the coefficients of the other powers of A
we get the following system:

Pop — Vsl = G (k=0,...,n—l) Pin = @y f (j=0,...,n). (2,19)

(ii) In order to obtain the first Poisson tensor Py, we eliminate u = vy /2 + ap/4 from (2.19)
using the first equation (k¢ = 0) and we extract the system of n second-order ODEs in the

vi(=1...,nk

Pk — Upyp = G (k=1’-'-snﬁl) Pon = 0y (2‘20)
which will be referred to as Py-system. The remaining equations (2.19) will furnish a set
of n independent integrals of motion. In order to obtain a second Poisson structure, we
consider the following system: (Pj-system)

Po—vy = Gk=1..,n-1) Pnn = 024 (2.21)
with u as above.
(iti) The system (2,20) can be written in Lagrangian form. For this purpose, we use the so-

called Newton or r-representation introduced in [16]. Namely, we choose as new coordinates
in S,ﬁm the first n coefficients r; of the formal series r(A) := +/v(A):

=A (\/v_(}\—)) k=1,...,n) (222)

where A; means the coefficient of A% in a Laurent series. Taking into account {2.17), and

observing that 2r, = — Z:;;, rirnti—j, €quations (2.20) are equivalent to

(A” (rn + (r, + a—“-;—h) r — Z‘:—3))+ = 0. (2.23)

This system is Lagrangian, with Lagrangian function
LY = Ay (LG5 r () (2.24)
where £(}; w(A)) is given, for each Laurent series w(A), by
L0 w(d)) 1= l(w,c(x)) ! (w; + —4~) w?(A) — Szgti). (2.25)
The Lagrangian gradients
8 d d 3

—_— i — — ——

Srk 3rk dx ark,‘

of LD are

sL® ag— A a
-é——k——Ak l(l (——ru——(rl—i- ) )T+E§))+ k=1....n). (2.26)

We remark that it is also possible to put also the P;-system (2.21) in Lagrangian form.
For this purpose, we take as coordinates in S gs = r; (k = 1,...,n—1) and g, = /=0,.
By this choice the system (2.21) is equivalent to

1 - A a
5q3+( ""(xx+(ql+a—34——)q—4 )) =0
7 (2.27)

‘?nxx+('?l +%)4n - zqg =0
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where (A"~1g(1)), := (A*"'+/u(X)), . This is a Lagrangian system with Lagrangian

2::

1

(2.28)

Indeed it can be verified that the Lagrangian gradients of L},” are

SLW i ap — A | P
3 q—l = Ay ( ("Qxx - (Q1 + —‘—'4 )q + 443)) - E‘L-.

SL ag— A a
= Aucy (x* "gax — (g: + =+ 4—3-)) k=2..,n-1) (229
7/

g,

51:(” dop
5;,, = —qnxx — (QI + ) +— g 3
The two previous Lagrangian systems can be put in canonical Hamiltonian form. For
the Py-system the canonical momenta are 5,41 = i (k = 1, ..., n) and the Hamiltonian
function
H® = Ay (HOG (R, s(O) (2.30)
where s(A) = 377_, 5;4™/ and H(A; w(r), z(A)) is given by
. -2 2 a4 — A 203, _a(d)
H; w(d), z(A)) = 22 M+ 5 (wJ +— ) W) + T (2.31)

For the Pj-system the canonical momenta are p, = @ux, Pn—t = Qkx (l"c =1,...,n~1),
and the Hamiltonian function is

1 a
r — . 2 ‘0 Gon
B = Ay (WG4 0, PO + 577+ 5 o+ Da+s 5 e
with p(A) = 31, piri.
The two Hamiltonian functions depend, respectively, on the two sets of coordinates and
momenta (r, 53}, (g, pr) and on the two sets of free parameters (ao, ..., 8,-1,a,) and

(aOv vaa 3 Bn-1, aZn)-

{iv) Now let us consider the manifold M, (2.18), which can be parametrized either by
{ry, S, @)y or by (qi, px, am), with a, and aj, as additional dynamical variables in M,.
On this manifold one can trivially extend the canonical Poisson structures, the Hamiltonians
and the vector fields associated with each one of the two systems as in [17]. In particular the
vector fields can be extended in such a way that they are tangent to one of the foliations Sf,f’
and ng. Taking into account, on one side, the relation between the two sets of coordinates
through the original variables (v, up,), and on the other side the relation between the
two integrals of motion &, and ap, through the GD polynomials pg, and p,., a map
D M, - My, (re, St an) = {Gk, P, G2,) can be systematically constructed. It relates
the Hamiltonians and the vector fields of one system with the corresponding ones of the
other system. Since this map is not a Poisson morphism, the extended canonical Poisson
structures associated with one chart are mapped onto a Poisson structure different from the
extended canonical structure associated with the other chart. If this second Poisson tensor
is compatible with the extended canonical one, a bi-Hamiltonian formalation of the two
systems is obtained.

In conclusion we can state the following:
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Proposition 2.1. The Pp-system (2.20) and the P)-system (2.21), written respectively in
the coordinates r; and g; are natural Lagrangian systems. The corresponding canonical
Hamiltonian systems

a H(D) ] H(D)
g = —— Spy = ——— (2.33)
25 8re
dHD aH®D
=0 N 2.
Tix ap Pl dg (2:34)

have n integrals of motion given by

K]‘E_%pfﬂ;y=aﬂ+j (.j:I!"'vn) I#E_%Pjnlx=an+j (j=0!"'vn_"1)'
(2.35)

Moreover, the map @ M, — M, in the extended phase space generates a second Poisson
structure.

Remark 2.{. The symbols |¥ and |X in (2.35) mean that, in the GD polynomials p;, the
coordinates (v, vg,) must be replaced by the canonical coordinates (r, sy} and (gx, pz)
respectively and that the first-order x-derivatives of momenta must be eliminated by means
of the Hamiltonian dynamical equations (2,33), (2.34).

In the next subsection we shall give some applications of the results stated in this

proposition.

2.3, The bi-Hamiltonian structure of a Hénon—-Heiles system

We consider a generaiized Hénon—Heiles system with two degrees of freedom,
Its Hamiltonian is

1 2 2 3 1 2 a4 ap 2 1 2
Hy = P (P} +p) +ai + S41d; + ‘BT% + 3 \4 + Zqzz 34 (2.36)

where g, g2, pi, p2 are the canonical coordinates and momenta and agp, a1, ay are free
constant parameters, This Hamiltonian encompasses the iwo cases ap = a4 = 0 and
ao = a) = 0 introduced in [18]. Moreover Hy is related with the Hamiltonian

1

1 1 L * I
Hy == (pl+p3) + 3 (Aql2 + quz) + g+ 5

! 04
5 el tgm @D

through the map
A
q1=a +5 —28 g2 = gy ag = —2A+ 128 a; = ~A? + 16AB — 48R,
(2.38)

The function Hgy is the Hamiltonian of 2 classical integrable Hénon-Heiles system {19]
with the additional term ay/8g.%.

The function (2.36) is the Hamiltonian of the the vector field obtained reducing Xo(u) =
i, to the stationary manifold M, given by the fixed points of the flow Xz + 1 X; + 62X

My = {u)u® + 10ucu + 20050, + 30050 + 01 (Uyar + Ougut) + C2tix = 0} (2.39)
where ¢| = —ao/2, € = —ai /2 + a}f4.
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It can be obtained specializing to the case n = 2 the Hamiltonian (2.32) of the P;-system.
In this case H{” = Hy and the canonical coordinates and momenta are, respectively,
g1 = U1/2,q2 = +/—Vz, P1 = Gix,» P2 = Gox. The integrals of motion obtained by the
reduction of the GD polynomials are

Hy = “%POEW
A P
H2 = 3P22|x ] (2.40)
1 1 1 a1 a
0 = '-'gPlz,x = piq1 — p1p2g2 ~ 291%_ 3 a; + I‘?z_ - 143 + -S—Gz
The corresponding Hamiltonian vector fields will be denoted by X;,, = EdH; (j =

0,1, 2); E being the canonical (4 x 4) Poisson matrix. The Hénon-Heiles vector field X;
is:

4192 +

T
&,
4 ——qu] . @4D

@ 4
The second Hamiltonian formulation can be obtained specializing to the case # = 2 the
Hamiltonian (2.30) of the Pp-system:

1
X = [p:, P, =347 — 54’% — g+ 2

Hm) = 5150 — —r] + 2 r] ry — ;rg - %ag "13 + %a;rf + agryrs — %dg r - %a, 2 {2.42)
where the canonical coordinates {2.22) and momenta are, respectively, ry = v1/2, r; =
va/2 — v2/4, 5; = 1o, 52 = ry;. The integrals of motion obtained by the reduction of the
GD polynomials are

= 1 = —lg
Ko = spn?-:r = 8
Kl'. = -“pf2|y —H
= 1,5 3
K= —%Pzz,v = —.rzrz + 5185271 + E*"l —5r + 2r;r22 - -gaar{‘

1, .3 L. 13 1 1, .2 1 1
Fiar} — jaorin & jainry + jaor; — gaprd — jaar;

(2.43)

and the corresponding Hamiltonian vector fields will be denoted by ¥; := E dK;.

Now we construct the bi-Hamiltonian structure of the Hénon-Heiles system. Let
M; be the five-dimensional extended phase space parametrized by (ry, ra, 51, 525 &) or
(g1, 92, p1, p2;as). It is convenient to make use of block notation. So, for example,
we denote with (r, 5; a) the 5-tuple (ry, 1y, 51,523 a), with ¥ = [X*, ¥°; X7 the generic
vector field and with dE = [8K/or,0K /35, 9K /9a]T the generic gradient of a function
K (the superscript T means transposition). In this notation a vector field ¥ = PdK with
Hamiltonian function K with respect to a Poisson tensor P will be written

fr prr prs  pra %ig-
g5 { = | psr pss psa g . (2.44)
- as ’ )
Xﬂ Pﬂr PCS Paﬂ aj-
da
where P = —(P"’)T, ..., etc, From the definition of ry.rp and g;, g in terms of vy and

vz, and from (2.40) and (2.43) one obtains the following map: & : My — My, (7, 55 @) >
{g. pas)
q=n g2 = (=2ry ~ rH)12
51+ rise
(=2r, —rH)12

(2.45)

P =482 Pr=— a4=—8K2
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with K> given by equation (243). In these two charts let us consider the extended
Hamiltonians H and K,, the vector fields X (X’ X, XI =X, X{ =0 and ¥
(I’:[ =Y/, }:,’ =Y, 1‘3" = (), the extension of the canonical Poisson structure

0 10
E:= (—1 0 o).
0 00
The following proposition holds:

Proposition 2.2. The action of the map @ : My - M, defined by (2.45) on the
Hamiltonians H;, the vector fields ¥; and the Poisson tensor Pa .= E is given by

®*(H,) = K;, ®.(¥,) = X, and by
0 A —-8X%%
Byi=0, P =] AT B —8X% (2.46)
8(XNHT 8XNHT 0

1 o - 170 —
A=“§( 42) B=—2( Pz).
gy \—q2 2q gi\p» 0
Thus we have recovered in the extended phase space M; a second P01sson tensor Bp.

We can check that Py is compatible with P, =E. Furthennore Py and B give rise to the
following bi-Hamiltonian hierarchy:

Xjp = PdH; = Rydln (j=0,1) (247)
the Hamiltonians Hy and H, being Casimirs of P and Ay, respectively.

where

3. Restricted flows and Garnier systems

The method of restricted flows was introduced in [20] as a nor-linearization of the Kdv
spectral problem and was generalized in [5,2]. We formulate this method puiting the
emphasis on the role of the GD polynomials and of their generating function; this formulation
allows us to construct a map between stationary and restricted flows in the next section. In
view of the applications, we begin by applying the method to the KdV hierarchy, recovering
the Garnier system. .

Let us consider the following system:

) ‘ . ‘
Pob — V1 =g Po(vl—Eﬁj)=0 PHB =0 (k=1,...,n) (3.1

- f=1 ' - ' - :
where: Aq,..., A, are distinct fixed parameters, P* := P; — A, Py (P and P, being the two
Kav Poisson tensors (2.4)). This is a system of (n + 2) equations in #, v, B, ..., .

The second equation will be referred to as the Py-restriction of the first Kav flow
Xo = Pouy = vy, and the last # equations define the kemel of # Poisson tensors extracted

from the Poisson pencil. On account of (2. 14) (2.4) and(2.7) this system is equivalent to
the following one:

u= le + "[{ 2 =‘§ﬁj +ec BM(By, Bi) = fi (32)



5106 G Tondo

where ¢ and f; are free parameters and B* is just the generating function (2.6) of the GD
polynomialis.

Using the first two eguations to climinate # and v, from the last # equations, one gets
a system of n second-order ODEs for §i...., B.:

n
200 B — Be. + 28F (Z‘,ej +d) - M8 = fi k=1 (3.3)
j=i
where d = ¢ -+ ap/2. Introducing the so-called eigenfunction variables ¢; = \/E and the
momenta X;j = Yy, equations (3.3) can be written in canonical Hamiltonian form
ks CLY
ir = —— = == i=1,..., 4
Vix 3% Xix v, ¥ n) (34)
with Hamiltonian

J=1 J..-'[

"‘E&"‘{(vaz) Z(AJ 2d)y} + Zf’ . (35)

The corresponding Hamiltonian vector field Vg = £dKg is

T
1 1 ; .
Yo = [x,-, =5 (T VDY + 3Oy — 2y + ;%,] G=1,...,m (3.6)
i
& being the (2n x 2n) canonical Poisson matrix. Equations (3.4) are just the equations of
the Garnier system with n degrees of freedom [2]. A set of integrals of motion is

,!bl n
5 =x}"+-j— (M—A;+Zw§)
=

5 L (e A 2
+4%1+k2 w( o mm)

3.7
with 3715, = 2Kg. These integrals were obtained in [23] by means of a Lax
representation; we shall recover them in the next section by the use of the generating
function of the GD polynomials.

Let us consider the (2rn + 1) extended phase space M, with coordinates (¥, x5; ) and
the extended Hamiltonian ng, the vector field yo = £dKg with

0, 1, ©
é=(—1,, 0, 0).
0 0 0

In this space the Garnier system has a second Hamiltonian structure given by

0 A-vey 4T
Bi=] ~(A-¢ @) xo¥-v@x 4V (3.8)
V10 R0 LT, 2 L
where ® denotes the tensor product, ¥ = [¥1,..., 0% X = [xi,.... xaJ% A =
diag(h, ..., A,;). This structure is an extension of the one constructed in [6] for f, =
0.k =1,...,n). In view of the applications we specialize the above structure to

the case n = 2, in the five-dimensional extended phase space M, with coordinates
(1, Y2, X1s x2; ). The following proposition holds:
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Proposition 3.1. The Garnier vector field 3, = J; belongs to the following bi-Hamiltonian
hierarchy:

YV =PidGy=PpdGs (=01 39
where the Hamiltonians §; are given by
5 d 5 d 1,. -
Go =~ G =—(h+ri)s+s;(h+ h)
4 4 2
; i 1 I ) (3.10)
Ga=Midag = s0n+ ) + B) + 50 h +A2h)

g"o and G, being Casimirs of ?50 and Py, respectively, with I, b being the extensions to
M of the integrals of motion (3.7).

As in the case of the Hénon-Heiles system, a hi-Hamiltonian structure for the Garnier
system seems to naturally exist only in its extended phase space. Nevertheless, in
subsection 5.3 a realization of the integrability structure introduced in proposition 5.1 will
be constructed in the original four-dimensional phase space.

4. A map hetween stationary and restricted flows

Now we shall construct a map between the nth stationary flow and the previous restricted
flow of the Kdv hierarchy. To this end we extend the corresponding phase spaces, regarding
some free parameters in the Hamiltonian functions as additional dynamical variables.

4.1. The general case

As for the Pj-formulation of the stationary flow (2.34) we extend its phase space to a
(37 4 1)-dimensional space, Jff,” with coordinates (g, Px; @0, - - - , @u-1, @24); analogously
we consider the Fy-formulation of the first restricted flow (3.4) in the extended space M,
with coordinates (Y, xx; fir---0 S d).

Let us consider the solutions g; of the dynamical equations (2.34); then v™ (%) given
by

¥ = A (2W)" Y - g2 (4.1)
with g(A) = 1+ E *_1g;A~/, satisfies (2.17), and consequently satisfies the following
equation:

B (v (), v™® (M) = ATa(h) (4.2)
where, as above, we put # = v /2 + ag/4. So, for each n-tuple of distinct complex
parameters A;, any solution v () of (4.2) fulfills the system

BM (v (), v () = AF"a(he) k=1,...,n) (4.3)

where v@(A,) == v™(A)poy,. In order to have a solution also satisfying the second
equation (3.2), the Lagrange interpolation formula can be used [21,22}. It allows us to
represent the polynomial v (1) by

v(u)(}_) PO + Z o (JL) {4.4)
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where p(A) = J_l(k Aj), and

2" (Ag)
P

(p'(x) means the derivative of p(R) with respect to i),
Obviously the »n functions B, (4.5) are solutions of the following system:

By =

k=1,....n) (4.5)

2 Aﬁ"a(hk)
2Bixs B — BL, + 282 Zﬁ,+-—-—zxj “Mf=EanE G=lem.

je=1 J=1
(4.6)
Furthermore, §; satisfy the so-called Bargmann constraint
n
26~ %) =u @
j=1

as one can verify by means of (4.4). Comparing (4.6} with (3.3), we can state the following:

Proposition 4.1. Let W ; M, - M,, (g. 80, ... 8n-1,82) = OO X0 Fio oo os fuod) e
the map:

e _ 12

= e o @M — 4t
¢ P'(A)

1

o Y1 GitPat My = GuPa

(o (T Tloaga ™ ~@2))
1 2041 4.8)
ﬁ:m(dm SEHH-—JA;"}' Ea’bf"‘l“‘k)

J=a+l
= -_2}.

Xk =

where H; are the Hamiltonian functions (2.35). If (gx, pe} are solutions of the stationary
flows (2.34), then (Y, xx) are solutions of the Garnier system (3.4) for fi and d given by
(4.8).

Remark 4.1. The function B* is also a generating function of integrals of motion for the
Garnier system. Indeed evaluating the function B* by means of (4.4) and eliminating the
first x-derivatives of x; by means of the Hamilton equations (3.4), one gets

J@"a(}u)
Ek A,+Z<A o T = oo “9)

i=1

where I; are the functions (3.7). Taking in this equation the residues at A = X; it follows
that the functions I; are integrais of motion along the fiow (3.4).
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4.2. The map between the Hénon-Heiles and the Garnier system

Now we specialize the map of proposition 4.1 to the Hénon-Heiles and the Garnier systems
with two degrees of freedom: we obtain the surprising resuit that the Hénon—Heiles vector
field is mapped onto the Garnier vector field. Let us consider the seven-dimensjonal phase
space of the Hénon—Heiles gystem M, with coordinates (g, p; ag, &, @1). Similarly, for
the Garnier systems let us select the parameters fi, f2,d and eni&rgé the phase space to a
seven-dimensional phase space M, with coordinates (¥, x: fi, fo.d). It is easy to prove
the following:

Proposition 4.2. Let W : My — My, (g, p; 6o, @1, as) = (¥, x; fi, fa. ) be defined by
¥ = AR08+ 2uq — gD v = A0S - 200g: + )
(A1p1 —q2p2) {Aap1 — q2p2)

1/2
(h12 02 + 20141 — ¢2))” " (a2 (=M= 2hgr £ D) (4.10)
fi =257 (=2 + a0kt + @y A] — SHOA% ~ 8H Ay + as)

fo = A2 (=23 4 aohs + @3 — 8HpA] — 8Hiha + as) d= —° — (Ay + A2)

where A1z = Ay — A2. The tangent map W, maps the extended Hénon-Heiles vector fields
X1, X 2. 47) onto the extended Garnier vector fields ¥, yg (3.10):

vw.()=% W (&)= “.11)

Mareaver the pull-back of the Garnier integrals of metion ¢, and G» are integrals of motion
for the Hénon—Heiles system

WG = —~(12+9\ )y 4+ —(M +3Lz)+ —8-

W (G) = AF PhraHy + (M + lz)Hl + 2Hp) @.12)
+JLIZ 222 (G342 - - 20342 - S +).

The action of the map ¥ on the Poisson tensor E of the ‘Hénon-Heiles system, fornishes a
new Poisson tensor for the Garnier system compatible with &. Moreover the action of ¥
on the Poisson tensor B, is given by

0 A0
w*ﬁo\v*—_—xfg[—f B 0] @.13)
0 0 0
where
ao L [¢§(w3+¢§+xz—h) =YY + ¥ ]
vivil —tni+ed T EvtR=R0d
_ e [ 0 (X2 "Xl‘!lz):] '
V| = — xaiv) 0 .

So the map W is not a Poisson morphism. However, according to (4.11), the orbits of the
Hénon—Heiles system are mapped onto the orbits of the Garnier system.
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5. A new integrability structure

5.1. The reduced structures of the Hénon—Heiles and the Garnier systems

In order to have a bi-Hamiltonian hierarchy also in the original phase space for the Hénon-
Heiles and the Garnier systems, one can 11y to apply the reduction techniques known from
the literature [10,24]. In particular, two methods can be followed: a restriction to the
standard phase space or a projection onto it. However, in both cases, these attempts fail.

As for the Hénon-Heiles system, if the restriction submanifold is chosen to be a leaf
S of the second natural foliation in M,, the Hamiltonians H;, the vector fields X; and the
Poisson structure Py can be trivially restricted respectively to H;, X; and E; but it turns
out that Z cannot be restricted. So two integrable Hamiltonian vector fields are obtained
in §{! but not a bi-Hamiltonian hierarchy.

If T : My — S3,(q1,42, P1. P25 @2e) = (q1, 92, 1, P2) is the projection map, the
Hamiltonians H; and the vector fields X; cannot be projected onto §;, because they depend
on the fibre coordinate. Instead, the Poisson tensors P and P; are projected onto

P 0 A P
Py =TM.pN" = [—AT B:[ n.pn*' =k (3.1)
with A, B as in proposition 2.2, Because these operators are compatible and invertible, one
obtains the following Nijenhuis tensor, [25]:

— a_f4a 0 ]
Ny = PyE~ = [B AT (5.2)
and consequently the hierarchy of Poisson tensors Py, = Nfi Py, k ¢ Z. However, these
tensors are not invariant along the flow of the Hénon~Heiles vector field X, equation (2.41).
In other words X is neither a symmetry of P nor of P, so that these tensors cannot generate
a bi-Hamiltonian hierarchy starting from X;.

As in the case of the Hénon—Heiles system, one cannot reduce the bi-Hamiltonian
structure of the Garnier system with n degrees of freedom onto the resiricted phase space.
1T My = SO, (W, xa3 d) = (W, X&) is the projection map, the Poisson tensor Pp
and P are projected onto two compatible tensors

¢ A~y @y ]
-(A-yey)’ x@¥-yoxl
They give rise to the Nijenhuis tensor N 1= Pz £~} together with the hierarchy of Poisson
tensor fields Py 1= Ng £ ,k € Z. However, these tensor fields are not invariant along the

flow of the Garnier vector field Y (3.6), so they do not generate a bi-Hamiltonian hierarchy
starting from Vg.

MEMT =  Pgi=NPm= [ (5.3)

5.2, A new integrability criterion

In the previous subsection we have put into evidence some problems arising in the
geometrical reduction of a bi-Hamiltontan structure from an extended phase space onto
the original one. As an alternative construction, here we infroduce 2 new integrability
scheme, weaker than the bi-Hamiltonian one, but living in the standard phase space. We
shall define this new structure for a generic Hamiltonian system with n degrees of freedom;
for n = 2 it coincides with the one iniroduced in [8] for the Hénon-Heiles system with
the Hamiltonian (2.37) and a; = 0. As new examples of this integrability structure, the
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case of the Garnier system with two degrees of freedom will be discussed here whereas
multidimensional extensions of the Hénon—Heiles system will be presented elsewhere.

Froposition 5.1. Let M be a 2n-dimensional Poisson manifold equipped with a Poisson
tensor (Jy, and Zy a Hamiltonian vector field with Hamiltonian kg: Zg = Qg dhg. Let there
exist a tensor A : TM — TM and a skew-symmetric tensor g : T*M — TM such that

01 =NQo. (5.4)

Denote by Z; and g; the vector fields and the 1-forms obtained, respectively, by the iterated
action of the tensor N on Zg and its adjoint N* : T*M — T*M on oy = dhy

Z, :=N'Z o =Ny i=1,..,n—1. (5.5)
Let there exist n — 1 independent functions &; (i = 1,...,7 — 1) and (n®> + = —2)/2

functions py; (i=1,...,n—LOL <D withpgo=1, uy #0{ =1,...,n—1),such
that the 1-forms ¢; can be written as

I
o =)y dhy i=1,....,n—1). (5.6)
j=0
Under the previous assumptions the following results hold:
(i) the vector fields Z; satisfy the recursion relations
Ziyy = Qotti1 = Qo i=0,...,n-2). (5.7

(ii) the functions A; are in involution with respect to the Poisson bracket defined by Qg and
they are constants of motion for the fields Z,

{h:, hilg, =0 Lz h)=0 (5.8)
where £z, denotes the Lie derivative with respect to the vector field Zy.
(iit) the Hamiltonian system corresponding to the vector field Zy is Liouville-integrable. In

addition if ¢ is a Poisson tensor field, then also Z; is an integrable Hamiltonian vector
field and the functions A; are in involution also with respect to the Poisson bracket defined

by O1.

Proof. (i) From (5.4) and the skew-symmetry of Qg and @, it follows that Qo N* = N Oy
and G N* = NQ;. Then

Z, — Qoy = Z1 — QoN"ap = Z) — N Qoo = 07 5.9
and the first relation (5.7) is proved by induction since it is
Zist — Dottipt = NZ; — QoN*ey = N(Z; — Qo) . (5.10)
The second relation (5.7) follows from

Ziy — Qe =NZ; — Q1o = N(Z; — Qoaiy) . (5.11)
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(ii) By (5.6), the gradients d#; can be expressed for any & in terms of dhg

k
diy = (E Vk,'N*') dhg (5.12)
=0

where vy; are the elements of the matrix a~!, a being the lower-triangular matrix defined
byagy=pE2J) a;=00E<j) ,j=0,...,n—1). Thus

{hh hj}Qo L= {dhis Qodhj)

P
= ZZVjanb(N*‘dho, QDNJ’dhO)

a=0 b=0
i J
=YY viavip{dho, N Qodho) (5.13)
a=0 §=0

and the first relation (5.8) follows from the skew-symmetry of the tensor N™ Qg for any m.,
Furthermore

Lz, (h) = (dhy, Qooe—1)

I3
= (dhi. o Z #kjdkj)
=0

k
= wglhi, bl
j=0
=0. (5.14)

(iit) Since Zg is a Hamiltonian vector field, it is Liouville-integrable on account of ‘the
previous result. Moreover, since it is

{hi hylp, : = (dhy, O1dh;)

i g
=3 viavip N dio, QLN dio)

a=0 b=0

i J
= Z Z U;ﬂl{,'b(dho, Na+bQ]dh0)

a=0 b=l
=0 (3.15)

it follows that if | is also a Poisson tensor, {, }g, is a Poisson bracket, Z; is 2 Hamiltonian
vector field and then it is Liouville-integrable. O

Remark 3.1, The recursion scheme and the integrability of the vector field Zy do not require
that the skew-symmetric tensor O be a Poisson tensor; so M is a Poisson manifold, not a
bi-Hamiltonian one.

In view of the applications of the next subsection, it may be worthwhile to remark that
the results of proposition 5.1 hold true if the role of @y and Q, are interchanged; to be
more precise, one can prove (just as for proposition 5.1):
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Proposition 5.2. The integrability scheme of proposition 5.1 is still valid if Q¢ is skew-
symmetric, ; is a Poisson tensor and the role of Zy is now played by Z; = Qidho. The
involution relations (5.8) become {A,, i;}o, = 0.

5.3, The integrability structure of the Hénon-Heiles and the Garnier systems

In subsection 5.1 we recovered by projection onto the quotient manifold S, the Nijenhuis
tensor (5.2) and a hierarchy of compatible Poisson tensors; however, it is not possible to
associate to these tensors and to the Hénon—Heiles vector field X; (2.41) a bi-Hamiltonian
hierarchy of vector fields. Nevertheless it is possible to use these elements to construct an
example of the integrability structure introduced in proposmon 5.2. For this purpose, let us
miake the following choices:

(i) @) = E, the vector field Z; := X, (2.41) with Hamiltonian ko := Hy (2.36);
(ii) the tensor field N := Ny (5.2) and Qo := P_y = N> Py, with Py as in (5.1);
(iii) the function h; := H (2.40) and the functions u;; as o =0, uyy =1 /qzz;

then it is immediate to check that the conditions of proposition 5.2 are satisfied. Moreover
the vector field Zy := Qo dhg = P.o dHy is a new integrable vector field:

—2p1qh — P22
—P1gq2
Zo=1| —p2+6a] + 20192 — £ — %01 — 2007 + $32 (5.16)
3
pipa+ L +3¢7q — Lga + aoqiqn

This integrability structure is related, through the map (2.38), to the one introduced in [8]
for the Hamiltonian (2.37) with a4 =0,

For the Garnier system with two degrees of freedom one can construct an example of the
integrability structures of proposition 5.1, Indeed if one uses the elements of subsection 5.1
and makes the following choices:

() Qo:=E, ho:=G B.11}, Zo:= Y5 (3.6) ;

() N :=N;' = EPZ!, with Pg asin (5.3), Qi :=P_, =NG' &
— 242

(iif) the functions k1 := G (3.11) , o = 0, pint = —rﬁm;

2

then the conditions of proposition 5.1 are satisfied. Moreover the vector field Z, = 1 )%
is a new integrable vector field () is the restriction to the submanifold of M3z, d = cost,
of the vector field 3% (3.10)).

At last, we compute how the map between the standard phase spaces of the Hénon—
Heiles and of the Garnier systems, induced by the map (4.10), acts on the recursion operators
of the previous integrability structures.

Proposition 5.3. Let us consider the map W : (g1, g2, p1, p2) = (1. ¥2, X1, X2)

¥ = 11—2!/2@.]2 +2hq1 — g ¥ = (M2) 3(=23 — g + gD)'?
(b1 — 2p2) o = (A2py — g2p2) G171
3 = 173"
(hiz (A2 + 20501 — g2/ (M2 (=32 = 200q1 + 20"

X1 =

The map W relates the recursion operators of the Hénon—Heiles and of the Garnier systems:
W, Ny = N;'W,.
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6. Concluding remarks

In this paper we have derived a bi-Hamiltonian formulation for stationary flows, and for the
first restricted flows of the Kdv hierarchy. Our approach amounts to respectively searching
the kernel of the Poisson pencil and n-Poisson structures extracted from the Poisson pencil
of the Kdv hierarchy. In this approach the generating function of the Gb polynomials
plays a relevant role. Moreaver it allows us to construct a map between stationary flows
and restricted flows; in the case of the fifth-order stationary Kdv equation, this map relates
solutions of the Hénon—Heiles system to solutions of the Garnier system. However, to obtain
these results one must extend the phase space of the reduced flows by means of some free
parameters naturally contained in the corresponding Hamiltonian functions. This difficulty
can be overcome, at least if one analyses the complete integrability of 2 Hamiltonian system
without requiring an explicit knowledge of a bi-Hamiltonian structure. For this purpose,
we have introduced a new integrability scheme in the standard phase space, which implies
Liouville integrability of the reduced Hamiltonian systems. For brevity we have applied this
scheme only to the Hénon—Heiles and the Garnier systems with two degrees of freedom.
Cther examples such as Hénon-Heiles type systems with three and four degrees of freedom,
constructed by means of the reduction method of section 2, will be discussed elsewhere.
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